LI AR B I AT
MEES N7

Empirical Copulas and Some Applications

Hideatsu Tsukahara

2000412 H

The Institute for Economic Studies

Seijo University

6-1-20, Seijo, Setagayva @

Tokyo 157-8511, Japan




Empirical Copulas and Some Applications

Hideatsu Tsukahara
Department of Economics, Seijo University

December 6, 2000

Abstract

This paper is for the most part a survey of various results on the copu-
las scattered in the literature, in a unified fashion. We shall present some
asymptotic results on the empirical copula process and use them to study
the asymptotic properties of tests of independence and measures of depen-
dence based on the empirical copula.

1 Introduction

Let F(zi1,...,zq) be a d-dimensional distribution function, and F; be the ith
marginal distribution function of F. It is known that there exists a distribution
function C on [0, 1] with uniform marginals such that

F(z1,...,zq) = C(Fi(z1),..., Fa(zyq)), forall (zy,...,z4).

See Sklar (1959, 1973), Schweizer (1991), Moore and Spruill (1975), Deheuvels
(1979, 1980). C is called the copula associated with F (some authors call it
the dependence function). In general, any distribution function on [0, 1]¢ with
uniform marginals is called a d-dimensional copula. When F' is continuous, it is
easy to see that the copula associated with F is uniquely determined and is given
by

F(F7 uy), o Ffi(ug), 0<u; <1, i=1,... ,d.

Copulas have recently been drawing some attention mainly as a tool to model
various dependence among random variables, including the fields of financial risk
management and multivariate survival analysis, and Joe (1997) and Nelson (1999)
both successfully present their use. However, the empirical copulas have not been
carefully studied despite the usefulness in some situations with low dimension.
Testing independence is one of those situations and is introduced in Section 2. In
Section 3, we define the empirical copula and some related statistics, and Section
4 presents some asymptotic results on the empirical copula process. In particular,
we give an asymptotic representation of the empirical copula process, which is
useful in deriving limit distributions of many statistics based on the empirical
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copula. In Section 5, we examine two well-known rank correlation coefficients and
other measures of dependence from the viewpoint of copulas, and use the results
in Section 4 to derive the limiting distributions of the statistics which generalize
the rank correlation. Section 6 concludes the paper with some remarks.

2 Tests of Independence

Let X* = (XF,...,X¥), k=1,... ,n be independent and identically distributed
random variables with a d-dimensional continuous distribution function F. Con-
sider the following Hypothesis of Independence:

Hy . F=F®  -®F,

In the literature, several rank tests are suggested; see Hajek and Siddk (1967),
Ruymgaart (1973), Kendall and Gibbons (1990). In this paper, we concentrate
on tests based on empirical distribution functions. Let

n n d
1 1
Fr(@n, 0 70) 2 =3 Aixbcar, xi<ed = 5 2 [ Lixican (2.1)
k=1

k=11=1
1 n
Fri(z:) £ - D Iixicay (2.2)
k=1

The following test statistics based on F,, and F,;; have been proposed.

d
A, & sup [F.(z) - HFni(fEi) )
z€RI i=1
. d 12
B, & / F.(z) - HFni(l‘i) dF,(z),
R L i=1 .

&
a2
11>

. :F"(x) - ﬁ“(xﬂ? 2 iledFm(m,-),
L]
D & /Rd

where w; in D,, and D, is some positive weight function on (0,1). A, is proposed
by Blum, Kiefer and Rosenblatt (1961), but it is not very tractable. B, and
B!, are due to Hoeffding (1948) for the case d = 2, and to Blum, Kiefer and
Rosenblatt (1961) for the general case. They also mentioned the use of D), and
De Wet (1980) studies D;, when d = 2. The statistic A, is Kolmogorov-Smirnov
type, B, and B, are Cramér-von Mises type, and D,, and D!, are Anderson-
Darling type, and so the motivation of introducing them is fairly obvious. Note
also that each of the above statistics is distribution-free.
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3 Empirical Copulas

Let C be the copula associated with a d-dimensional continuous distribution
function F. For convenience, we use the following representation of the X*. Let
ek = (&k,... &%) k=1,... ,n be independently and identically distributed with
distribution function C, and set

1 n

= yel

*Ezl{ifﬁuly-u,ﬁ'jgud}r Uz = E 1{5k<ul}
k=1

k"l

Put X* = (XF,..., X% 2 (F7He), ..., Fr ' (€%)). Then the distribution func-
tion of X* is F for k = 1,... ,n. As in (2.1) and (2.2), we denote by F, and
F,; the empirical joint and marginal distribution functions based on the X*. We
then have

F.(z) = G.(Fi(z1),. .., Fa(za))

and
d d
[T Friz:) = [[ Gri(Flz))-
i=1 =
Define
d
Tn(w) £ Gp(u) = [[ Gnilw)
i=1

Then one can easily see that the statistics introduced in Section 2 have the fol-
lowing representation:

A, = sup |Tn(uw)| =:|Txl],

u€(0,1]4
d

= 2dGn(u), _— 2 (W) Gni(ui),
Bo= [ B G, B= [ T [0 )

=1

) d
D, = /{O’I]A[mu)] T (o) 45 ),

D, :/ [Tn(u)] le(Gm HdGm u;).
[0,1)¢

Since F' is assumed to be continuous, it is easy to see that F' = F} @ --- ® Fy
if and only if C' = X, where A(uq,...,uq) 2 Hle u;. This fact indicates the use
of statistics based on empirical copula in testing the hypothesis of independence.
Let us define the empirical copula by

Culu) 2 Fa(Foi (w), .. Frg(ua)),

'S nd

3_
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and set
An 2 sup |Cu(u) = Au)],
u€[0,l]d
B, 2 / [C,(u) — A(w)]* dC,, (u), E; £ / (Ch(u) = Mw)]* dA(u),
[0,1]¢ [0,1]¢

d
D, & - u 2 wil Uy n N
Do [ 1Caw) = Mo T wito) ()

D, = -/[0,1],1[(Cn(“) = A()]? Hwi(ui) O

=1

Using the representation introduced earlier,

1 n
Colu) = n Z l{gnglolF;}(u]),“, LE<FyoF, j(ua)}
k=1

= Gn(Fl o F;ll(ul), N ,F‘d O]F;;(‘U,d)).

By the definition of F},}', it follows that F;}(u;) = Fi(G}

(u;)), and hence
Ca(u) = Ga(Grf (w), -, Gy (ua)).

This implies that the law of C,, is the same for all F' having the same associated
copula C. Note that

d
k k k; ~
A‘n: sup C7L(_17"'7_g>—Hﬁ :An'
1<k <n n n =1
i<i<d =

We also have
. d 2
B, = / {Cn(u) - H Gni(G} (Ui))} dCp (u),
[0,1]4 i=1

so B,, is not exactly the same as E’n, but later we show that the difference between
them is of order n=3/2.
For the computation of the test statistics, one may use the representation

1 1 - H?:l Rf
By =~ > ['ﬁ ; Loxdext xisxsy = =0 ’

n
k=1

where RY is the rank of X¥ among X},..., X?. For d = 2, it holds that

B, — ?zl? SN (R)Na(k) — Na (k) N3 (k)]?,
k=1
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where

Ni(k) £ # of {(X!, X}) such that X! < xX¥ x! < Xk},
No(k) £ # of {(X{, X}) such that X! < XF, X! > XF},
N3(k) £ # of {(X1], X}) such that X! > XF, X! < X5},
Nay(k) £ # of {(X1, X}) such that X! > XF, X} > x¥}.

Analogously, one obtains

1 n n 1 n ¢ kz

ki=1  kg=1 I=1 i=1
and
1
1 n a k
A, = sup |- E 1, p : - H =
/ <ki,..,RL<k
1<ki<n[ P 77 {(Rysh,. Ry <hal n
1<:i<d = =

4 Asymptotic Theory

To study the asymptotic behavior of the statistics in the preceding section, we
first need to introduce several processes which appear in the limiting random
variables.

Let C be any copula. The d-dimensional C-Brownian sheet W< is a continuous
Gaussian random field with

E(WC(u)) =0, EW @)W (v)) = Clunw),

where uAv = (uy Avi, ... ,ugAvg). The d-dimensional pinned C-Brownian sheet
UY is a continuous Gaussian random field with

E(U%)) =0, EU%w)U%@)) = CluAv) — C(u)C(v).
Its version may be given by
UY (w) = WE (1) — C(u)WE (1)

The d-dimensional Brownian pillow [Piterbarg (1996)], or completely tucked Brow-
nien sheet [Van der Vaart and Wellner {1996)] V is a continuous Gaussian random
field with

d
E(V(u) =0, EV(@)V(@) =[] Av - uv).

i=1

See Adler (1990) and Piterbarg (1996) for more information on these processes.
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4.1 Special Construction

Neuhaus (1971) and Bickel and Wichura (1971) showed
¢ 2 (G, - C) 5 U°,

for Jl(d)—topology on Dy, as n — oo. For the precise definition of the space
Dy and the Jl(d)—topology, and for more on multivariate empirical processes, we
refer to Einmahl (1987). By Skorokhod-Dudley-Wichura representation theorem,
there exist a triangular array £"* = (£p%,... 7;1&«)7 k=1,....n,n € N of
row-independent random vectors with distribution function C and a pinned C-
Brownian sheet U®, all defined on some probability space, such that

JUS —U%|| =0, as.

where U is defined as above with empirical distribution function based on
£, ..., €™, The merit of this construction is that it is easier to deal with
random variables directly than their laws. When C' = A, we simply write U,, and
U for U} and U respectively. All the asymptotics below is based on the above
special construction.

4.2 Asymptotics for T,, when C = A

In order to find the null distributions of test statistics, we need to study the
asymptotic behavior of T,, when C = A. In this case, we can write

d
VT, (u) = Un(u) — \/E[H Gni (u;) — )\(u)}.
1=1

Using the identity

d d d i—1 d
[Ta:-TIb:=> (a=b) [0 ] (4.1)
i=1 i=1 i=1 j=1  h=i+1
we get
d 1—1 d
ViTa(u) = Un(uw) = 3 Un(l,u, 1) [Ty [ Gon(un),
i=1 j=1  h=it+1

where 1 is the vector consisting of 1 with appropriate dimension. We define a
random field T by

d
T(u) £ Uw) = Y U(L,u;,1) [ u,-
=1 J#i
Its covariance is given by

d d d
E(T(w)T(w)) = [J(wi Avi) + (d = 1) [Juivi = > (wi A} [[ wsv;
=1

i=1 i=1 J#i

_67
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Notice that if |a;] < 1 and |b;] < 1 in the identity (4.1), then

d d

[le- 110

i=1 i=1

d

=Y lai — bil. (4.2)
=1

This gives
H\/ﬁTn(U’) - T(U)H

d i—1 d
<NUn = U+ U = U+ 10 [T TT Gentun) = [T
i=1 j=1 h=i+1 J#
d d

<(d+ DIUn = U+ UL > sup [Guun(u) — ul.

i=1 h—it1 wE[01

Two terms on the right clearly converge in probability to 0, hence we conclude
that ||/AT, — T|| = 0.

When d = 2, the covariance function of T is equal to (u; Avy —w vy )(us Avy —
u5v5). This shows that the limiting random field of /nT, is a Brownian pillow.
However, T is no longer a Brownian pillow for d > 3.

4.3 Asymptotics for the Empirical Copula Process

We define the empirical copula process DS by

Dy (u) 2 V(Ca(w) = C(u)).

The following Bahadur-Kiefer type asymptotic representation of the empirical
copula process was stated in Stute (1984), p. 371, and he indicated the outline of
a proof. We shall now write down the details of the proof.

4.1 Theorem Assume that the copula C associated with F' is twice continuously
differentiable on (0,1)? and the second derivative is continuous on [0, 1]¢. Then
with probability 1, we have

d
D¢ (u) = UG (u) + ZCi(u)Ug(l,ui, 1)+ 0 (n‘}/“(logn)l/z(loglog n)1/4) ,
1=1

uniformly in u. Here we use the following notation:

ocC

Ci(u) = B

(u), 1=12,....d
Proof. Write

Dg(u) = Ug(u) -+ Jn(u) + K, (“)v
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where

Ju(u) = V[C(Gry (w), ..., Grg(ua)) — C(u)),
Kn(u) = U (G (w), - -, G (ua) = US (w).

By the differentiability assumption on C, we can use Taylor’s theorem to get

d
Tn(u) = Z CH(u) V(G (u:) — us)

G:! -1
i=1 j=1
where v* lies in the interior of the line segment joining (G} (u1),.. ,G;ﬁ (uq))

and (ui,...,uq). We know that
V(G (us) = w) = =US (1,6, 1) + V(G 0 G (i) = us).

Using |Gni o G} (u;) — u;| < 1/n and the Smirnov-Chung law of the iterated
logarithm for the empirical distribution functions

1Gns = I|| = IG, = 1| = O ("_1/2(loglogn)l/2) :

we obtain

d
- Z C'w)US (1,6} (us), 1) + O(n~?loglogn), as.
i=1

uniformly in u. Furthermore, Stute (1982) (p. 99) shows that

sup [US (1,6} (us), 1) = US (1,us, 1) = O(n~/*(logn)*/* (loglog n) /%), as.
Ui
It thus follows that uniformly in u,
d .
= — Z CHu)US (1, u;,1) + O(n~Y4(logn) 2 (loglogn)t/*), as.

Next we consider K, (u). For a,, € R, put
w(an) = sup {|US ((z1, 1] x -+ x (Ta,ya))| 1 yi — @i <an, 1 <i<d};

here we regard G,, and C as measures on [0,1]¢. By Stute (1984), Theorem 1.7,
we can find two positive constants ¢; and ¢y such that

2
P(w(a) > s) < cia;%exp {~ c;s } .
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We take a, = n~1/2(loglogn)!/?, suggested by the Smirnov-Chung law of the
iterated logarithm. For this a,, we choose s = s, = n~/4(logn)'/?(loglog n)!/*,

so that

= 282
- 2
g a;%exp [- "] < 00.
an

n=1

This implies, by Borel-Cantelli lemma, that

sup [K,(u)| < const - wy(an) = O(n"4(logn)/?(loglogn)'/*), as.

proving the theorem. W

As an immediate corollary to this theorem, we obtain
DT - DY =0,
where

D(w) £ U () = Y CHw)U (1, u;,1).

i=1

(In fact, to get the invariance principle DY N DY, we only need to assume that
C is continuously differentiable on (0,1)?). Clearly D is a centered Gaussian
random field. It is possible to write down its covariance function, but it gains us

little. In the special case where C = A, C'(u) = [T, uj, 50 we have D £T.

4.4 Asymptotic Distributions of the Test Statistics under
Hy
By the results in Section 4.2, one immediately sees that
Vidn = VA, = VAT 5 T,

For only a handful of Gaussian random fields, the exact distribution of the max-
imum is known (Adler (1990)), but T is not one of them. Piterbarg (1996)
(Theorem 9.2) obtained an approximation of the tail probability for the maxi-
mum of Brownian pillow V. When d = 2, T is a Brownian pillow, so his result
may be used to get approximate critical values for ||T||: when d = 2,

P(IT)| > u) = 327u?(1 — ®(4u))(1 4+ o(1)), as u — oo,

where @ is the distribution function of the standard normal distribution.
As for the Cramér-von Mises type statistics, it is straightforward to show that

nB! = / (D2 (u)]? du 5 T (u) du.
[0,1)¢
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Also, since ||DA|| = O,(1), it is easy to see that

By the definition of B,,

d 2
|B, — B,| = 1 / [ccn(u) - HG,ﬁ(G;il(ui))} dCn(u) — B,
=
s2ncn—xu/‘IIGﬁAG;%uo>—Auo dCa ()

+ / {lj Gni(G;il(ui)) - /\(U):rdcn(u)

Using [|C,, — A|| = Op(n"12), |Gpi 0 G} (wi) — us| < 1/n and the identity (4.1),
one finds |B,, — B,| = O,(n™3/?), whence

nB, 5 / T? (u) du.
[o,1}4

B’ can be handle analogously, so all four test statistics By, B.,, B, and B!, have
the same limiting distribution as we naturally expect, namely, that of [ T?(u) du.
To find this distribution, we need some general theory.

Let {Y () }¢g[o,1)¢ be a centered Gaussian random field with paths in the space
of square integrable functions on [0, 1]¢ and with covariance function K (¢, u). Also
let Ay, Ao, ..., and fi1, fa,... be the eigenvalues and normalized eigenfunctions of
the kernel K. This means that the A; and f; satisfy

K(t,u)f;(t)dt = \; f;(t), wel0,1]?
[0,1]¢
and

| [0 forj#k
/W £ fut) dt = {1 iz

We assume that the following Kac-Siegert decomposition (Kac and Siegert (1947))
holds:

K(t,u) = Z X fi () fi(w). (4.3)

This holds whenever K is continuous by Mercer’s theorem. Consider the process
U(u)/+/u(l — u), where U is a 1-dimensional Brownian bridge. This process ap-
pears in the asymptotic distribution of the classical Anderson-Darling statistics,
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and the covariance function of this process gives an interesting example in which
(4.3) holds while K is not continuous. See Anderson and Darling (1952).

Under the above assumptions, the following Karhunen-Loeve expansion of
Y (¢) holds:

t) = Z Z;f;i(t), (in L? uniformly in t).

where the Z;’s are uncorrelated zero-mean normal rv’s with var(Z;) = A;. See

Ash and Gardner (1975). Setting Z7 = Zj/\/—X, which has a standard normal
distribution, it follows that

1
*2
/0 Z/\Z

Thus we obtains the characteristic function of fo Y2(t) dt:

1 oo
E(exp{ir/ Y? dt}) = H(l - Zi/\jrf%.
0 i=1
We now apply the above result with Y = T. In the case with d = 2, we know
that K(u,v) = (u1 A vy — urv1)(ug A va — ugvz). Blum, Kiefer and Rosenblatt

(1961) showed that the characteristic function of [ T?(u)du is given by

ﬁ 1 247 3
s 71522 :

Then inverting this characteristic function numerically gives the probabilities we
need.

When d > 3, the form of K(u,v) is not very tractable. Deheuvels (1981)
and Cotterill and Csorgd (1985) both claim to find the characteristic function of
[ T?(u) du, but the two forms are apparently different.

In a comletely analogous fashion, one can see that the Anderson-Darling
type test statistics D,, D, D and D’ are all distributed asymptotically as
J T?(w) [T wi(us) du under approprute assumptions on the weight functions w;.
Its distribution has not yet been found except for the case d = 2. In that case, De
Wet (1980) used a different method to derive the asymptotic distribution of D,
directly. For the general case, we would need to develop the asymptotic theory
of weighted empirical copula processes.

5 Rank Correlations and Other Measures of De-
pendence

5.1 Population versions of rank correlations

Let X and Y be random variables with joint distribution function F(z,y). We
denote by F'x and Fy the marginal distribution functions of X and Y respectively.
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The simplest ordinal measure of association between X and Y may be given by
Pl(X —20)(Y —yo) > 0] = 1~ Fx(x0) — Fy (yo) + 2F (2o, y0)

for some fixed (zo,y0). If we take zg = med X and yg = medY, we get
2F(med X, medY). The Blomguist’s q is a symmetrized version of this, and
is defined by

g2 P[(X —med X)(Y —medY) > 0] — P[(X — med X)(Y —medY) < 0]

=2P[(X —med X)(Y —medY) > 0] -1

= E[sgn(X — med X)sgn(Y — medY))
The above choice of (zg,yo) is quite arbitrary, so it seems more natural to take
average over all (zg,yo) with weights given by F(z,y). This amounts to consid-
ering

£ P[(X1 — Xo2) (Y] — Y3) > 0] — P[(X1 — X3)(Y1 = Y3) < (]
= 2P[(Xl — XQ)(Yl - Yz) > 0] -1,

where (X;,Y7) and (X,,Y2) are independent randam vectors with distribution
function F. Since Efsgn(X; — X3)] = E[sgn(Y; — Y5)] = 0, we have

T = Elsgn(X1 — X2)sgn(Y: — Y2)] = cov[sgn(X; — X»)sgn(Y; — ¥2)],

which is also equal to the correlation coefficient between sgn(X; — X») and
sgn(Yy — Y,) because var[sgn(X; — X3)] = var[sgn(Y; — Y3)] = 1. This 7 is
known as Kendall’s tau. In terms of F, it can be written as (see Schweizer and
Wolff (1981))

T:4//F($,y)dF(z,y)—-1, (5.1)
Using the copula C associated with F', we have
T:4//C(u,v)d0(u,v)—l. (5.2)

If we take average with weights Fx (z)Fy (y) above instead of F(z,y), then
we get

P{(X; — X5)(Y1 — Y3) > 0] — P[(X; — Xo)(Y1 — Y3) < 0],

where (X;,Y7), (X2,Y2) and (X3,Y3) are independent randam vectors with dis-
tribution function F. A similar argument as above shows that this quantity
equals

Elsgn(X; — X2)sgn(Y1 — Y3)];

it also equals the covariance and correlation coefficient between sgn(X, — Xa)
and sgn(Y; — Y3)). This lies between —1/3 and 1/3, so we define

p £ 3E[sgn(X; — Xy)sgn(¥; — ¥5)],
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so that we have —1 < p < 1. This p is called Spearman’s rho. A straightforward
calculation shows that

p=12 / /'[F(x, y) - Fx (2) Fy ()] dFx (z)dFy (y) (5.3)
=3 [4 [[ P arx@ar @) -1 (5.4)

One should contrast (5.1) with (5.4) to see the similarity between 7 and %p.
Another expression for p is (Joag-Dev (1984))

p= 3//[1 — 2Fy (2)][1 - 2Fy (y)] dF (z, y). (5.5)

Using the copula C, we obtain
p= 12//[C(u,v) — uv)] dudv = 3//(1 —2u)(1 = 2v) dC(u,v). (5.6)

5.2 Sample rank correlations

As is well known, there are sample versions of the measures of association dis-
cussed in the preceding subsection. Let (Xi,Y1),...,(X,,Y,) be a random sam-
ple of size n from the distribution F. As for Blomqvist’s ¢, ¢ is defined to be the
number of (X;,Y;)’s in the first and third quadrants around the sample medians
minus the number of (X;,Y;)’s in the second and fourth quadrants around the
sample medians, divided by n. If n is even, this is unambiguously defined, but
for odd n, some modification is necessary; see Kruskal (1958). Kendall’s sample
rank correlation coefficient is defined by

a 1 )
- mziijzsgn()ﬁ - X;)sgn(Y; = Y;)

Let K and L be the number of concordant and discordant pairs ((X;, Y;), (X;.Y})),
i < j respectively (A pair ((X;,Y;), (X;.Y;)) is called concordant if (X; — X;)(Y; —
Y;) > 0; it is called discordant if (X; — X;)(Y; — Y;) < 0). Then one can show
that

2(K - L) 4L 4K

et e N

nin-1) = nn- 1) - n(n—1)

1.

Spearman’s sample rank correlation coefficient is by definition given by

6T (R — RY)?
a n(n?-1)

P 1 ~ X oy 2
o Yo ;:1 R R —3n(n+1)

where R¥X is the rank of X; in the X;’s, and similarly for RY .
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Replacing Fx, Fy and F with the corresponding empirical distribution func-
tions Fx ,,, Fy,, and F, in (5.1), (5.3) and (5.5) does not yield the sample rank
correlations 7 and p exactly. In fact, an easy computation gives
4(K + n)

-1
n? ’

4/ Fo(z,y) dFo(z,y) — 1 =
SO
4K
s [[Faemy) (o) - 1= 25 -1
1

is much closer to 7. For the Spearman’s rank correlation, two natural empirical
analogues of (5.3) and (5.5) are

12 [ [ [Fule:0) = Fxnl0)Fyn )] dFx o (2)dFyn(0)

1 - ; A
== {IQZR;’(R} - 3n(n + l)zjl

i=1

and

3 [[11 = 2 n(@)1 - 2 )] B ) = = {12 STRFRY —3nt(n+ 2)} .

=1

They are both very close to p.

5.3 Empirical Copulas and Rank Correlations

Let C,, denote the empirical copula based on the sample (X;,Y7),...,(X,,Yy),
and define

pn =12 //[(Cn(u,'u) — uv] dudv
Tn = 4//Cn(u,v) dC,(u,v) — 1

These are empirical versions of (5.2) and (5.6) respectively and are natural es-
timators of p and 7, based on the empirical copula. Thanks to the results in
Section 4.3, we can derive asymptotic properties of these statistics with ease.
We assume throughout this subsection that C(u,v) is continuously differentiable
with the partial derivatives

9C (u,v)
ou

oC (u,v)

1 —
C ('U,'U) - 8‘0

C*(u,v) =

Then,

V(B — p) = 12 / / VA[Co () ~ C(u,v)] dudv
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converges in law to 12 [[ D (u, v) dudv, which has a centered normal distribution.
Its variance is cumbersome, but if C = A, i.e., the X;’s and Y;’s are independent,
then D* is a Brownian pillow and a straightforward calculation shows that the
variance of 12 [[ D (u,v) dudv under C = X is 1. This agrees with the known
asymptotic variance of Spearman’s rank correlation coefficient (Kendall and Gib-
bons (1990)). More generally, let us define, for any function J on [0, 1]3,

s(c) & / / J(u,v,C(u,v)) dudv.

The corresponding sample quatity S(C,) may be called Spearman type rank
statistic (see Gaenssler and Stute (1987)). The above p,, corresponds to the case
J(u,v,w) = 12(w — uv). The asymptotic distribution for this type of statistics
has been obtained by Gaenssler and Stute (1987):

5.1 Theorem Assume that J has a continuous partial derivative J°(u, v, w) with
respect to w such that sup, , |J3(u,v,w)| < co. Then /n(S(C,) — S(C))
converges in distribution to a normal distribution with mean 0 and variance

o(S) £ var (/ I3 (u, v, w) Z (u,v) dudv) ;

provided o(S) > 0. The process Z(u,v) is defined by
Z(u,v) él{ffu,ngv} — C(u,v)
- Cl(u,v)(l{ESu} —u) — 02('zt,v)(1{n§v} —v),
and (&,7) is a random vector with distribution function C'.

The limiting distribution for 7, is more complicated. Corresponding to the
Spearman type rank statistics, we put, for any function J on [0, 1]?,

T(C) 4 // J(u, v, C{u,v)) dC(u,v).

We call T(C,,) a Kendall type rank statistic. Note that taking J(u, v, w) = 4w —1
gives 7, defined above. The asymptotic distribution of a Kendall type rank
statistic is given in the following:

5.2 Theorem Assume that J(u,v,w) is continuously differentiable. We denote
the partial derivatives by

oJ(u,v,w) _ 0J(u,v,w) OJ(u, v, w)
— J(u,v,w) = B, " 5

and assume that they are uniformly bounded. Then \/n(T(C,,)~T(C)) converges
in distribution to a normal distribution with mean 0 and variance

Jl(u,v,w) = ) (]3(7%'“,%‘) =
o(T) & var(J(f,n,C(E,n)) + // [J3(u,v,C(u,v))(l{ggu,ngy} — C{u,v))

+ J(u, v, C(u,v))(L{e<uy —u) + J*(u,v, C(u,v))(Lin<oy — L)] dC(u,v)),

provided o(T) > 0, and (£,7) is defined as in Theorem 5.1.
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We only indicate the outline of a proof; the argument is typical and the details
can be easily filled in. Write

Vn(T(C,) - T(C))
:/ J3(u, v, C(u,v))DS (u, v) dThp(u, v) +// J(u,v, C(u,v)) dDS (u,v) + R,

where R, = op(1). The first integral will converge to

// J3(u,v, C(u,v))D (u,v) dC(u, ),
and the second to [[ J(u,v,C(u,v))dD(u,v), which is just a symbol for the
limiting random variable, not a stochastic integral in any sense. By the invariance
principle and an straightforward calculation involving integration by parts, it can

be seen that the covariance structure of these two limiting random variables is
the same as that of

// T3 (u,v,C(u,v))Z(u,v) dC(u,v)
(Z(u,v) is defined in Theorem 5.1) and
T Cm) - [ [ I, Cuv)dcu
+ //[Jl (u,v,C(u,v)) + J*(u,v,C(u,v))C (1, 0)](1g<u} — u) dC(u,v)
+ //[Jz(u,v, C(u,)) + J* (u,v, Cu,v))C? (u, )] (1 {y<vy — v) dC(u,v).

Summing up the two cancels some terms out, and the result is as given in the
statement of the theorem.

5.4 Other Measures of Dependence

Besides the rank correlation coefficients, there are several measures of dependence
which can be written in terms of copulas. Many of them can be classified into two
classes: Spearman type and Kendall type. Examples of Spearman type measures
are

Sp(C) = //[C(u,v) —wlP dudv, (p>1)

and
S5:(C) = / |C (u,v) — uv| dudv.

S2(C) is discussed in Yanagimoto (1970), and S;(C) in Schweizer and Wolff
(1981). They claim that S;(C) has many desirable properties as a measure of
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association. Examples of Kendall type measures are obtained by replacing “dudv”
by “dC(u,v)” in the above: for p > 1,

T,(C) = //[C(u,v) —w?dC(u,v), T (C)= / |C(u,v) — uv| dC(u,v).

T5(C) is the well-known Hoeffding’s A (Hoeffding (1948)). Of course, there
are measures of dependence which belongs to neither of the above two classes;
sup,, , |C(u,v) — uv| is such an example.

We can use Theorems 5.1 and 5.2 to find the asymptotic distributions of the
sample versions (replacing C' by C,) of these measures of dependence except for
Sy and 7. However, note that J*(u,v, w) = p(w — uv)?~! for S, and T, (p > 1),
so when C'(u, v) = uv, we have J3(u,v, C(u,v)) = 0. This violates the assumption
that o(S) and o(T) are strictly positive. Thus, we cannot apply Theorems 5.1
and 5.2 when two random variables under consideration are actually independent.
This corresponds to the null distribution of the test statistics for independence
discussed before; we must find alternative ways to evaluate the asymptotic null
distribution.

6 Concluding Remarks

The empirical copula is a nonparametric estimator of the copula in models for
multivariate data. The present paper demonstrates that we can use the em-
pirical copula for testing independence and for estimating several measures of
dependence, and derives the asymptotic properties of those test statistics and es-
timators. Obviously, the empirical copulas can be used for many other purposes,
and here we shall discuss some of them.

Recently, copulas have proved useful to model dependence in financial risk
management (Embrechts et al. (1999a, 1999b), and Clemen and Reilly (1999))
and analysis of multivariate survival data (Hougaard (2000)). The reason is that,
for the nonnormal multivariate distributions, the use of the classical correlation
coefficient can be seriously misleading. One specifies a model by choosing a
parametric form Cy(u) of copula to model dependence we have in mind. It is
then important to have methods to estimate the unknown parameter 6. We
can use empirical copulas to estimate the unknown parameters of copula by the
minimum distance method: For example, # which minimizes

M(9) & /[0

may be used as an estimator of 8. Alternatively, estimation based on ranks of the
observations is another possibility, and investigation of those two methods will
be our next research project.

Note also that the above M (6y) may be regarded as a goodness-of-fit test
statistic for testing validity of the presupposed multivariate model with copula
Cy,(u). In any case, it seems impossible to find the exact distribution of M (),

)

l]d[(Cn(u) ~ Cy(w))? du
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and again we have to resort to asymptotics. That is, it is necessary, though by
no means easy, to study

/[0 14 [D (w)] *du

for true and contiguous 4.

Finally, we remark that the efficiency aspect of estimation of the parameters
of many copula models is examined in Bickel et al. (1993), and that Tjpstheim
(1996) studies estimation methods using Hellinger distance and Kullback-Leibler
information with estimated densities, together with discussion of tests of inde-
pendence.
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