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Abstract

This paper attempts to estimate the probabilities of economic slack in the

labor market of Japan and examines how useful they are to understand the business

cycle. We use Markov switching models to estimate them with a deviation-cycle

data of non-scheduled worked hours. The main findings are as follows. First, a

simple Markov switching model generates the smoothed probabilities that are

closely related to the business cycle. Second, inclusion of lagged dependent

variables as explanatory variables does not solve the model misspecification

problem indicated by the conventional specification testing. Third, a Markov

switching model statistically fits the data with frequency components higher than

seasonality better than those without them. The models accepted by specification

testing, however, do not generate the smoothed probabilities consistent with the

business cycle.
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1 Introduction

The reference dates of business cycle are not only a starting point of empirical

research, but a great concern from the press and policymakers. Particularly,

significant downturns in economic activity are a fundamental concern making the

headlines. Recently, Romer and Romer (2019) proposed that the NBER (National

Bureau of Economic Research, U.S.A.) should focus on a large and rapid rise in
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economic slack to date peaks and troughs of business cycles, rather than on a

decline in economic activity as that the modern definition emphasizes. They

pointed out that the dates played an important role in establishing the concept of a

recession as a repeated and identifiable phenomenon.

Furthermore, they claimed that the focus on the economic slack lead to a

narrower and more precise definition of a recession that is more firmly grounded in

modern understanding of macroeconomic. They showed some supportive evidence

for the United States and Japan in the modern low-growth era. They argued that it

appeared not only better suited to identifying episodes of interest in settings where

trend growth is low, but more closely corresponding to how both economists and

the public think of a recession.

Following Romer and Romer (2019), Otsu (2021) attempted to identify

economic indicators of economic slack in Japan, which show peaks and troughs

consistent with the reference dates. It used monthly labor-market indicators of

composite indices of Japan. To measure slack in labor market, it used deviation

cycles or growth cycles, that is, the departure from secular trends based on filtering

methods. It used three types of filtering methods: the Christiano-Fitzgerald filter

(Christiano and Fitzgerald, 2003), the Hamming-windowed filter (Iacobucci and

Noullez, 2005) and the Butterworth filters (e.g. Gomez, 2001; Pollock, 2000). Canova

(2007) gives a concise description of these methods.

Otsu (2021) found that ‘Index of Non-Scheduled Worked Hours (Industries

Covered)’ is a promising variable to identify a recession in Japan. It also found that

the unemployment rate, one of the useful indicators to identify the modern U.S.

recessions in the literature, does not produce dates of the turning points consistent

with the official reference dates of Japan.

To understand how the economic slack deepens, we need to quantify the

degree of slack over time. The economic slack is measured by a deviation cycle as

in Otsu (2021). One way to quantify the slacking degree is to compute probabilities

of the economy in the economic slack over time, the so-called smoothed

probabilities. Then, this paper uses Markov switching models with a deviation-

cycle data in the labor market of Japan to compute such probabilities and examines

how useful they are to understand the business cycle.

The main findings are as follows. First, a simple Markov switching model

generates the smoothed probabilities that are closely related to the business cycle.

Second, inclusion of lagged dependent variables as explanatory variables does not

solve the model misspecification problem indicated by the conventional

specification testing. Third, a Markov switching model fits the data with frequency

components higher than seasonality better than those without them in terms of the

specification testing. The models accepted by specification testing, however, do

not generate the smoothed probabilities consistent with the business cycle.

The rest of the paper is organized as follows. In section 2, we briefly review

simple Markov switching models used to be estimated. Section 3 discusses data for

our analyses. We use ‘Index of Non-Scheduled Worked Hours’ which is one of the

individual indicators of the composite indices, Japan, and found useful to identify a

recession in Japan (see Otsu, 2021). In section 4, we examine the estimation results

of the Markov switching models. We compute the smoothed probabilities and

compare them with the officially published peaks and troughs of the business cycle

to see whether the estimated probabilities are useful for recession identification.

The final section is allocated to discussion.

2 Markov Switching Model

Following the recommendations in Hamilton (2016), we use the following

simple Markov switching model. Suppose we have M different states. Let y an

economic time-series variable at time t (t=1, 2, ⋯, T) to be modeled:
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ϕ(L)y=μ+ε，i=1, 2, ⋯, M , (1)

ε 〜N (0，σ 
 )，i=1, 2, ⋯, M , (2)

ϕ(L)=1−∑




ϕL
，Ly≡y, (3)

where μ, σ and ϕ are all unknown constant parameters.

Let the economic state at time t denoted by an unobserved variable, S. The

transition between states is assumed to be governed by a first-order Markov

process that is independent of ε. Then, the transition probability from i to j is:

Prob [S= j S=i]=p，i, j=1, 2, ⋯, M , (4)

where

∑




p=1. (5)

Since the economic state is not observed, we need to infer it from past information.

Let Ω the past information available at time t. Specifically, we set Ω−=

{y, y, ⋯}. Then, we could calculate the probabilities of being in the state j,

S= j, for t=1, 2, ⋯, T, by iteration as follows:

P[S= j Ω]=∑




Prob[S= j, S=i Ω−] (6)

=∑




Prob[S= j S=i]P[S=i Ω]. (7)

To find the joint density of y and S, we define the conditional density

function of y for the state i as:

f (y S=i, Ω)=
1

 2πσ 


exp− e


2σ 
 , (8)

where

e=ϕ(L)y−μ，i=1, 2, ⋯, M . (9)

Then, the joint density of y and S can be written as:

f (y, S=i Ω)=f (y S=i, Ω)P[S=i Ω]. (10)

We obtain the marginal density of y by summing over S:

f (y Ω)=∑




f (y S= j, Ω)P[S= j Ω]. (11)

To compute eq.(11), we need stating values for P[S Ω] in eq.(7). We can

employ the following steady-state probabilities of S. Let the unconditional

probabilities ρ of being in the state i and the transition matrix P*. That is,

R=
ρ

ρ

⫶

ρ
 (12)

and

P*=
p p ⋯ p

p p ⋯ p

⫶ ⫶ ⋱ ⫶

p p ⋯ p
, (13)

where ∑



ρ=1 and ∑




p=1 for i=1, 2, ⋯, M . Then, a first-order

Markov-chain property gives:

R=P*R. (14)

We obtain the steady-state probabilities by solving the eq.(14) under the conditions

of ∑



ρ=1 and R=R. Let the solutions (ρ, ρ, ⋯, ρ). Then, we set:
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P[S=i Ω]=ρ，i=1, 2, ⋯, M . (15)

Once we obtain y at the end of time t, we can update the P[S=i Ω]

in the following way:

P[S=i Ω]=
f (y, S=i Ω)

f (y Ω)
(16)

=
f (y S=i, Ω)P[S=i Ω]

∑



f (y S= j, Ω)P[S= j Ω]

, (17)

which is known as a filtered probability at time t in the literature. Combing this

updating formula with eq.(7), we can iteratively compute the marginal density of

y, eq.(11). Then, the log-likelihood function is given by

LL(λ)=∑




lnf (y Ω；λ), (18)

where λ denotes a vector of the unknown constant parameters, (μ，ϕ，p，σ)',

i=1, 2,⋯,M , k=1, 2,⋯,K, and j=1, 2,⋯,M−1. The unknown parameters

can be estimated by maximizing the log-likelihood, eq.(18). In the later analysis,

we set M=2. In this case, λ=(μ, μ, ϕ, ϕ, p, p, σ, σ)', k=1, 2, ⋯,

K, and the steady-state probabilities in eq.(15) are given as follows:

ρ=
1−p

2−p−p
, (19)

ρ=
1−p

2−p−p
. (20)

To draw an inference about the economic states, we might use the filtered

probabilities that are calculated with observed data along with estimates of the

constant unknown parameters. It is possible, however, to obtain a better inference

as more data accumulate. Suppose we have information at time t+h to infer the

economic states at time t. Consider the following joint probabilities:

Prob[S= j, S=i Ω]

=Prob[S=i Ω]Prob[S= j S=i, Ω]. (21)

Let Y

 ={y, y, ⋯, y}. Then, we have:

Prob[S= j S=i, Ω]

=Prob[S= j S=i,Y 
 , Ω] (22)

=
f (Y 

 , S= j S=i, Ω)

f (Y 
 S=i, Ω)

(23)

=
f (Y 

 S=i, S= j, Ω)Prob[S= j S=i, Ω]

f (Y 
 S=i, Ω)

.

Since S is inferred from S with exogenous probabilities in eq.(4), if S affects

Y

 only through S, we have:

f (Y 
 S=i, Ω)=f (Y 

 S=i, S= j, Ω). (24)

This gives a substantially simplified expression of eq.(23):

Prob[S= j S=i, Ω]=Prob[S= j S=i, Ω]. (25)

Note that if S affects y∈Y

 through its state-dependent lags, that is, ϕ≠0

in eq. (3), then, eq. (24) holds only approximately, and eq. (25) involves an

approximation (see Kim, 1994, pp. 9-10, for discussion). If eq.(24) holds either exactly

or approximately good enough, eq.(21) can be written as:

Prob[S= j, S=i Ω]

=
Prob[S=i Ω]Prob[S= j, S=i Ω]

Prob[S=i Ω]
(26)

=
Prob[S=i Ω]Prob[S=i S= j]P[S= j|Ω]

Prob[S=i Ω]
.
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
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=Prob[S= j S=i,Y 
 , Ω] (22)

=
f (Y 

 , S= j S=i, Ω)

f (Y 
 S=i, Ω)

(23)

=
f (Y 

 S=i, S= j, Ω)Prob[S= j S=i, Ω]

f (Y 
 S=i, Ω)

.

Since S is inferred from S with exogenous probabilities in eq.(4), if S affects

Y

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 S=i, S= j, Ω). (24)
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
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Prob[S=i Ω]Prob[S= j, S=i Ω]

Prob[S=i Ω]
(26)

=
Prob[S=i Ω]Prob[S=i S= j]P[S= j|Ω]
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.
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Then, we can infer S from data observed through t+h:

Prob[S= j Ω]=∑




Prob[S= j, S=i Ω]. (27)

This is known as an h-time-ahead smoothed inference. The algorithm in eq.(26) is

developed by Kim (1994) (also see Ch.4 in Kim and Nelson, 1999). Given Prob[S 

Ω], the iteration along with eq.(26) and eq.(27) gives rise to the h-time-ahead

smoothed probabilities, Prob[S Ω], t=t+h−1, t+h−2, ⋯, 1. When

we extend t+h to T, we obtain the full-sample smoother, proposed by Hamilton

(1989), which we use in the later analysis. That is,

Prob[S= j Ω]=∑




Prob[S= j, S=i Ω]. (28)

Finally, we consider the following specification of eq.(4):

Prob[S= j S=i]=Φ(α)， i, j=1, 2, ⋯, M , (29)

where Φ is the standard normal cumulative distribution, and α is a constant

parameter. In case of two states, M=2, we only need to estimate p and p in eq.

(4). Thus,

Prob[S=i S=i]=Φ(α)， i=1, 2. (30)

3 Data

We use the same data as in Otsu (2021): ‘Index of Non-Scheduled Worked

Hours’ (NSWH) that is included in the individual indicators of coincident

composite indices, complied by Economic and Social Research Institute (ESRI)

affiliated with the Cabinet Office, Government of Japan. ESRI routinely examines

and revises the composition of indicators. The latest revision, the 13th revision,

was made in March 2021.

Otsu (2021) used NSWH to estimate economic slack for the period of January

1980 to January 2020. As Romer and Romer (2019, see p. 12) discussed, a recession

can be defined as a sustained decline in the rate of growth of aggregate economic

activity relative to its long-term trend. Therefore, the ‘slack’ concept is better

suited to the growth cycles than the level cycles. In this interpretation, the growth

cycles are deemed detrended business cycles because a recession is interpreted as a

part of business cycle. Otsu (2021) used bandpass filters to suppress a secular trend

and noise components and to extract detrended growth cycles, that is, the deviation

cycles. Following Burns and Mitchell (1946), the business cycles are assumed to

range from 18 months (1.5 years) to 96 months (8 years), while the secular trend

corresponds to the longer-cycle components and the noise to the shorter ones. The

details are given in Otsu (2021).

A caveat is in order. In January 2018, it was revealed that officials at Ministry

of Health, Labor and Welfare had incorrectly conducted fundamental statistical

survey on labor-related conditions since 2004. Then, our data set is susceptible to

this incorrect compilation. According to Economic and Social Research Institute

(ESRI), affiliated with the Cabinet Office, Government of Japan, it has used the

corrected values published by the Monthly Labor Survey since January 2019 for

the time period from January 2012 onward as a remedy for the faulty data problem.

The earlier part of the series than the correction is connected by a link coefficient

method. Such a remedy makes these series good enough for our analysis.

To find how useful the estimated probabilities of economic states are to

understand the business cycle, we compare the probabilities with the official

reference dates of Japan. Table 1 shows the reference dates of peaks and troughs

identified by ESRI. It also contains periods of expansion, contraction, and duration

of a complete cycle (trough to trough). There are 15 peak-to-trough phases identified

after World War II. In these phases, the average period is about 36 months for

expansion, 16 for contraction, and 52 for the complete cycle. The reference dates
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are available on the website of ESRI
1)
.

Table 2 gives a summary of descriptive statistics of dependent variables used

in the later analyses. The sample period ranges from February 1980 to January

2020, and the total number of observation is 480. In the second and the third

column, we compute the statistics with the rate of change of the level data: the

original official data and the data with the components higher than the seasonal

frequency being filtered out by a Butterworth filter as in Otsu (2020), respectively.

Both data show the same mean values, but the standard deviation is smaller for the

latter by 43%: the frequencies higher than seasonality give rise to a large variation.

The skewness and the kurtosis indicate that they are away from a normal

distribution. The Jarque-Bera statistic suggests non-normality.

Since the deviation-cycle data could take zero values, we use the first

difference instead of the rate of change. The fourth column indicates the mean of

the business-cycle components is zero as expected. This is because the

components are computed as a deviation from a trend in the filtering process.

Therefore, even if we add the higher frequencies to the business cycle, the mean

would be zero, which is the case as shown in the fifth column. Comparing the

standard deviations in the fourth and the fifth columns, we find that the higher

frequencies contribute to a large variation, as pointed out above. Although the

skewness and the kurtosis in the fourth column are smaller in absolute value than

those in the fifth, they still indicate that the shape of the sample distribution is

different from that of a normal curve. In fact, the Jarque-Bera testing rejects the

normality.

4 Empirical Analysis

4.1 Preliminary Results

We begin with the estimation results based on the original series of ‘Index of

Non-Scheduled Worked Hours’ for the period from January 1980 to January 2020.

The dependent variable is the rate of change. Table 3 shows Maxmimum

Likelihood estimates of the model when K=0 in section 2. The conventional

wisdom says that estimates of α1 and σ are statistically significant, while those of

other parameters are either insignificant or marginally significant. Although the

estimates of μ and μ are not statistically significant, the positive estimate of μ

suggests the increase (0.12% per month) in the non-scheduled worked hours in the

state one, while the negative one (-1.10% per month) of μ indicates the decrease in

the state two.

Table 3 also shows the specification testing statistics studied by White (1987)

and Hamilton (1996). The testing does not reject the null hypothesis of the first-

order autoregressive (AR(1)) effect in residuals of the state two. The first-order

autoregressive conditional heteroskedasticity (ARCH(1)) in residuals is marginally

significant in both states. The joint effects of AR(1) and ARCH(1) across states

emerge. These indicate the possibility of misspecification of the econometric

model.

Table 4 and Table 5 show the estimation results when K=1 and K=2. The

estimates of the constant terms, μ and μ, are either not statistically significant or

significant only marginally. The estimates of the autoregressive coefficients, ϕj, i,

j=1, 2, are significant in the state two, but marginal in the state one. Since the

average of the dependent variable is -0.025%, the state one when K=1 indicates

the increase of 0.151% on average and the state two the decrease of -0.219%.

When K=2, the non-scheduled worked hours increase by 0.160% per month in

1) Indexes of Business Conditions: https://www.esri.cao.go.jp/en/stat/di/di-e.html, Dec.

2, 2021.
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the state one and decreases by -0.096% in the state two. When K=0 and K=1,

the worked hours change more rapidly when decrease than when increase. On the

contrary, the average decreasing rate in the state two is, in absolute value, smaller

than the average increasing rate in the state one.

In Table 4, the specification testing shows no AR(1) effects in residuals, but

marginal statistical significance in ARCH(1) and the joint effects. When K=2 in

Table 5, it indicates no AR(1) in the state two and no ARCH(1) in the state one, but

marginal significance of AR(1) effect in the state one and of ARCH(1) in the state

two. The joint testing indicates the presence of AR(1) and ARCH(1) effects. The

statistical testing gives mixed results on the misspecification. It seems, however,

that the model with K=1 is comparatively better specified among the three cases.

To examine effects of high-frequency components on estimates, we separate

the series into components with lower than 13 months per cycle and those with

higher than 12 months per cycle, that is, seasonality. We use a bandpass filter, the

tangent-based Butterworth filter, to extract a designated frequency band. In Table

6, we suppress the components that have frequencies higher than seasonality.

Since the NSWH, officially published, is a seasonally adjusted series, the

suppressed components are supposed to consist of all frequencies less than one

year. Then, the specification testing tells that the model is misspecified. In Table 7,

we only use the higher frequency components to estimate the model. Then, AR(1)

effect is found in the state one, and the joint testing of AR(1) and ARCH(1)

indicates marginal statistical significance. But, other statistics show no

misspecification. Therefore, the higher-frequency components make the

specification testing less likely to reject the null hypothesis of no misspecification.

Figure 1 shows the smoothed probabilities of the increasing NSWH index,

based on estimates in Table 3 through Table 6. The shaded areas in the figure

indicate the periods from peaks to troughs of the economy. Thus, we expect to

observe that the probability of the increasing index is high at the peak, that is, the

start of an area, and getting lower and lower for some period toward the trough,

may it not be monotonically. The first panel shows the smoothed probabilities

when K=0. They well correspond to the movement of the index. In addition, it

indicates that the economy is likely to be in the state of decreasing NSWH, during

the recession periods of 1991 to 1993 and 2008 to 2009. Note that the smoothed

probabilities of eq. (25) in section 2 do not involve any computational

approximation in this case. In the second panel of K=1, the smoothed

probabilities give a similar result, but a better description for the periods of 1997 to

1999 and 2000 to 2002 because they clearly indicate the economy is in the state

two, the decreasing NSWH.

In the third panel, the smoothed probabilities fluctuate a lot due to smaller

transition probabilities: p=0.8404 and p=0.8303. It is hard to judge whether

they correspond to the business cycle. In the fourth panel, we suppress the

frequency components higher than seasonality. In the state one, the NSHW index

changes on average by -0.031 points when the mean of the dependent variables is

-0.020, while in the state two by 0.003. Thus, the state two would indicate the

increasing state, and its smoothed probabilities appear in the fourth panel. They

move quite differently from those in other panels. It is hard to understand their

relation with the business cycle or the index because the economy is likely to be in

the state two (increasing worked hours) during the recession after 2000.

4.2 Deviation Cycles

In Table 8, we apply the Markov switching model to the business-cycle

components, which are extracted with a Butterworth filter as in Otsu (2021), the

parameter estimates are statistically significant at 5% level. The specification

testing indicates possibility of model misspecification. Table 9 shows the
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estimation result when the model have a lagged dependent variable as an

explanatory variable. The estimates are statistically significant, except those of the

constant terms. But, the specification testing rejects the null hypotheses of no

AR(1) and no ARCH(1) effects: there is no improvement in model specification.

When the higher frequency components are included, as in the previous

section 4.1, the model specification somewhat improves. The specification testing

in Table 10 accepts no AR(1) effect in state one, and no ARCH(1) effect in state

two. But, it still indicates misspecification possibilities. In Table 11, even when a

lagged dependent variable is added to the model, the misspecification remains.

Further, many of the parameter estimates are statistically not significant.

Since the estimate on ϕ is not significant, we estimate the model with a

constraint of ϕ=0 in Table 12. Then, the specification testing only indicates

ARCH(1) effect in state one, and marginally rejects the joint hypotheses of no

AR(1) and no ARCH(1) effects. In experiments, we used more lagged dependent

variables as explanatory variables, but we only obtained unreliable estimates and

even no normal convergence.

Figure 2 shows the smoothed probabilities computed with estimates in Tables

8 - 10 and Table 12. In the first panel, the smoothed probabilities are very high,

almost 1, at the peaks. Although they are also high at the troughs, they sharply go

down once and then go up toward the troughs. Therefore, it is possible to interpret

that the smoothed probabilities predict the end of recessions. The graph in the first

panel is comparable with that of the second panel in Figure 1, but gives even better

description of the 1980s. The second panel shows that the smoothed probabilities

move almost oppositely to those of the first panel. Thus, the probabilities seem lag

behind the business cycle except the period of the 1990s. Note that the graphs in

the first and the second panels are drawn based on the estimates of the models of

which the conventional specification testing indicates misspecification.

The smoothed probabilities in the third and the fourth panels only capture the

recession from February 2008 to March 2009. In other periods, the smoothed

probabilities indicate that the economy is in the state of rising non-scheduled

worked hours. That is, they have no relation with the business cycle. Although the

specification testing tells that the models are less likely to be misspecified,

particularly in Table 12, the generated smoothed probabilities seem not useful for

the business-cycle analyses.

In sum, when we estimate a simple Markov switching model estimated with

the filtered data that have only the business-cycle components, the specification

testing rejects the null hypotheses of no misspecification. But the estimates

generates the smoothed probabilities which are closely related to the business

cycle. Further, inclusion of higher frequency components make the specification

testing less likely to indicate misspecification of the econometric models that

produce the smoothed probabilities not easily understood in terms of the business

cycle.

5 Discussion

This paper attempts to estimate the smoothed probabilities of economic slack

in the labor market of Japan and examines how useful they are to understand the

business cycle. We use Markov switching models to estimate them with a

deviation-cycle data. The main findings are as follows. First, a simple Markov

switching model generates the smoothed probabilities that are closely related to the

business cycle. Second, inclusion of lagged dependent variables as explanatory

variables does not solve the model misspecification problem indicated by the

conventional specification testing. Third, a Markov switching model fits the data

with frequency components higher than seasonality better than those without them

in terms of the specification testing. The models accepted by specification testing,
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however, do not generate the smoothed probabilities consistent with the business

cycle.

Two final remarks are in order. First, our results suggest that statistical and

economic criteria might contradict each other. In another word, a good model in a

statistical sense does not necessarily generate meaningful implication in terms of

economics.

As the American Statistical Association (ASA) noted in the statement on

statistical significance and p-values (Wasserstein and Lazar, 2016), we should not

drive final conclusions solely from results of the null-hypothesis significance

testing (NHST). That is, p-values above or below 0.05 neither prove nor disprove

of the reality of anything. Therefore, we need further investigations, without any

preconceived belief, on the usefulness of the estimated smoothed probabilities in

terms of economics: the most pernicious effect of NHST is the delusive belief that

statistical significance constitutes proof, as pointed out by Matthews (2021).

Secondly, it is known that statistical conditions, which the standard

asymptotic distributional theory assumes, are not satisfied in statistical testing of

Markov switching models, particularly on numbers of states: the models are

plagued with unidentified nuisance parameters and identically zero scores under

the null hypothesis. Thus, nonstandard tests are developed in the literature that

includes Hansen (1992), Garcia (1998), Cho and White (2007) and Qu and Zhuo

(2021). Then, it is interesting to see whether such a nonstandard testing leads to

finding statistical models that produce the smoothed probabilities allowing

sensible economic interpretations.

Finally, although we find a simple Markov switching model produces

smoothed probabilities interpretable in terms of the business cycle, we should

make sure that such a simple econometric model works well for other business-

cycle indices or indicators. These are left for the ongoing research.
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Date (month, year) Number of Periods (in months)

Peak Trough Expansion Contraction Duration

June, 1951 October, 1951 ─ 4 ─

January, 1954 November, 1954 27 10 37

June, 1957 June, 1958 31 12 43

December, 1961 October, 1962 42 10 52

October, 1964 October, 1965 24 12 36

July, 1970 December, 1971 57 17 74

November, 1973 March, 1975 23 16 39

January, 1977 October, 1977 22 9 31

February, 1980 February, 1983 28 36 64

June, 1985 November, 1986 28 17 45

February, 1991 October, 1993 51 32 83

May, 1997 January, 1999 43 20 63

November, 2000 January, 2002 22 14 36

February, 2008 March, 2009 73 13 86

March, 2012 November, 2012 36 8 44

October, 2018* May, 2020* 71 ─ ─

Table 1 Reference Dates of Business Cycles: Japan

* Provisional date, as of July 30, 2020.

Source: Indexes of Business Conditions, Economic and Social Research Institute,

Cabinet Office, Government of Japan, November 30, 2021.

Statistic

Rate of Change (%) First Difference

Official Data

(S.A.)*

Passed Band

[0, 2π/13]
Passed Band

[2π/96, 2π/18]
Passed Band

[2π/96, 2π/2]

mean -0.0202 -0.0202 0.0000 0.0000

(standard error) (0.0556) (0.0318) (0.0440) (0.0525)

standard deviation 1.2185 0.6962 0.9650 1.1495

(standard error) (0.1593) (0.0627) (0.0728) (0.1235)

skewness -0.7454 -1.3371 0.0017 -0.4994

(standard error) (0.1111) (0.1111) (0.1111) (0.1111)

kurtosis 6.5430 9.0725 3.9447 5.2054

(standard error) (0.2201) (0.2201) (0.2201) (0.2201)

maximum value 3.2508 2.3093 3.4209 3.4941

minimum value -7.1763 -3.7469 -3.3436 -5.7733

Jarque-Bera Stat.** 295.5017 880.5278 17.8505 117.2285

(p-value) (0.0000) (0.0000) (0.0001) (0.0000)

Sample Period: Feb. 1980 to Jan. 2020 # of obs.: 480

Table 2 Descriptive Statistics of Dependent Variables

Note: * Seasonally Adjusted series. ** See Jarque and Bera (1987).
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Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.118955 0.175755 0.677 0.4985

μ -1.096310 1.267497 -0.865 0.3871

α 2.214343 0.425981 5.198 0.0000

α 1.307382 0.822758 1.589 0.1121

σ 1.009709 0.137952 7.319 0.0000

σ 1.936229 1.071101 1.808 0.0707

Log-Likelihood value: -739.8542 # of obs.: 480

Implied transition probability of staying in state one: 0.9866; in state two: 0.9045

Table 3 Estimation of Markov Switching Model: lagK=0

Note: The dependent variable is the rate of change.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 0.7468 1 0.3875

in state two 13.9268 1 0.0002

No ARCH(1) in residuals in state one 5.1498 1 0.0232

in state two 6.4100 1 0.0113

No AR(1) and ARCH(1) in both states 20.2367 4 0.0004

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.145106 0.073330 1.979 0.0478

ϕ -0.235354 0.123192 -1.910 0.0561

μ -0.206045 0.207374 -0.994 0.3204

ϕ 0.533912 0.186637 2.861 0.0042

α 1.914620 0.323686 5.915 0.0000

α 1.397630 0.298379 4.684 0.0000

σ 0.938806 0.062638 14.988 0.0000

σ 1.431189 0.203039 7.049 0.0000

Log-Likelihood value: -726.5472 # of obs.: 479

Implied transition probability of staying in state one: 0.9722; in state two: 0.9189

Table 4 Estimation of Markov Switching Model: lagK=1

Note: The dependent variable is the rate of change.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 1.2557 1 0.2625

in state two 1.2306 1 0.2673

No ARCH(1) in residuals in state one 4.7044 1 0.0301

in state two 6.5763 1 0.0103

No AR(1) and ARCH(1) in both states 11.8272 4 0.0187

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.143496 0.121809 1.178 0.2388

ϕ -0.445443 0.166390 -2.677 0.0074

ϕ -0.228365 0.122723 -1.861 0.0628

μ -0.076363 0.082629 -0.924 0.3554

ϕ 0.460431 0.131414 3.504 0.0005

ϕ 0.326100 0.084314 3.868 0.0001

α 0.996271 0.863142 1.154 0.2484

α 0.955174 0.322274 2.964 0.0030

σ 0.963335 0.071872 13.404 0.0000

σ 0.994711 0.159658 6.230 0.0000

Log-Likelihood value: -720.9461 # of obs.: 478

Implied transition probability of staying in state one: 0.8404 ; in state two: 0.8303

Table 5 Estimation of Markov Switching Model: lagK=2

Note: The dependent variable is the rate of change.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 4.0309 1 0.0447

in state two 0.4196 1 0.5171

No ARCH(1) in residuals in state one 2.2403 1 0.1345

in state two 6.5791 1 0.0103

No AR(1) and ARCH(1) in both states 16.5823 4 0.0023

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ -0.011628 0.005579 -2.084 0.0371

ϕ 0.941869 0.012344 76.302 0.0000

μ 0.022683 0.025617 0.885 0.3759

ϕ 0.989060 0.034801 28.420 0.0000

α 1.828202 0.108519 16.847 0.0000

α 1.418384 0.185042 7.665 0.0000

σ 0.066488 0.004929 13.490 0.0000

σ 0.283458 0.036483 7.770 0.0000

Log-Likelihood value : 361.8797 # of obs.: 479

Implied transition probability of staying in state one : 0.9662 ; in state two: 0.9220

Table 6 Estimation of Markov Switching Model: lagK=1, passband =0, 2π
13 

Note: The dependent variable is the rate of change.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 288.86232 1 0.0000

in state two 177.31453 1 0.0000

No ARCH(1) in residuals in state one 130.00234 1 0.0000

in state two 39.72080 1 0.0000

No AR(1) and ARCH(1) in both states 427.82944 4 0.0000
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α 1.307382 0.822758 1.589 0.1121

σ 1.009709 0.137952 7.319 0.0000

σ 1.936229 1.071101 1.808 0.0707

Log-Likelihood value: -739.8542 # of obs.: 480

Implied transition probability of staying in state one: 0.9866; in state two: 0.9045

Table 3 Estimation of Markov Switching Model: lagK=0

Note: The dependent variable is the rate of change.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 0.7468 1 0.3875

in state two 13.9268 1 0.0002

No ARCH(1) in residuals in state one 5.1498 1 0.0232

in state two 6.4100 1 0.0113

No AR(1) and ARCH(1) in both states 20.2367 4 0.0004

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.145106 0.073330 1.979 0.0478

ϕ -0.235354 0.123192 -1.910 0.0561

μ -0.206045 0.207374 -0.994 0.3204

ϕ 0.533912 0.186637 2.861 0.0042

α 1.914620 0.323686 5.915 0.0000

α 1.397630 0.298379 4.684 0.0000

σ 0.938806 0.062638 14.988 0.0000

σ 1.431189 0.203039 7.049 0.0000

Log-Likelihood value: -726.5472 # of obs.: 479

Implied transition probability of staying in state one: 0.9722; in state two: 0.9189

Table 4 Estimation of Markov Switching Model: lagK=1

Note: The dependent variable is the rate of change.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 1.2557 1 0.2625

in state two 1.2306 1 0.2673

No ARCH(1) in residuals in state one 4.7044 1 0.0301

in state two 6.5763 1 0.0103

No AR(1) and ARCH(1) in both states 11.8272 4 0.0187

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.143496 0.121809 1.178 0.2388

ϕ -0.445443 0.166390 -2.677 0.0074

ϕ -0.228365 0.122723 -1.861 0.0628

μ -0.076363 0.082629 -0.924 0.3554

ϕ 0.460431 0.131414 3.504 0.0005

ϕ 0.326100 0.084314 3.868 0.0001

α 0.996271 0.863142 1.154 0.2484

α 0.955174 0.322274 2.964 0.0030

σ 0.963335 0.071872 13.404 0.0000

σ 0.994711 0.159658 6.230 0.0000

Log-Likelihood value: -720.9461 # of obs.: 478

Implied transition probability of staying in state one: 0.8404 ; in state two: 0.8303

Table 5 Estimation of Markov Switching Model: lagK=2

Note: The dependent variable is the rate of change.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 4.0309 1 0.0447

in state two 0.4196 1 0.5171

No ARCH(1) in residuals in state one 2.2403 1 0.1345

in state two 6.5791 1 0.0103

No AR(1) and ARCH(1) in both states 16.5823 4 0.0023

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ -0.011628 0.005579 -2.084 0.0371

ϕ 0.941869 0.012344 76.302 0.0000

μ 0.022683 0.025617 0.885 0.3759

ϕ 0.989060 0.034801 28.420 0.0000

α 1.828202 0.108519 16.847 0.0000

α 1.418384 0.185042 7.665 0.0000

σ 0.066488 0.004929 13.490 0.0000

σ 0.283458 0.036483 7.770 0.0000

Log-Likelihood value : 361.8797 # of obs.: 479

Implied transition probability of staying in state one : 0.9662 ; in state two: 0.9220

Table 6 Estimation of Markov Switching Model: lagK=1, passband =0, 2π
13 

Note: The dependent variable is the rate of change.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 288.86232 1 0.0000

in state two 177.31453 1 0.0000

No ARCH(1) in residuals in state one 130.00234 1 0.0000

in state two 39.72080 1 0.0000

No AR(1) and ARCH(1) in both states 427.82944 4 0.0000
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Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ -0.005808 0.036867 -0.158 0.8748

ϕ -0.348756 0.055134 -6.326 0.0000

μ -0.006848 0.150284 -0.046 0.9637

ϕ -0.096412 0.169189 -0.570 0.5688

α 1.614109 0.423039 3.816 0.0001

α 0.730825 0.256415 2.850 0.0044

σ 0.720943 0.071872 10.031 0.0000

σ 1.532536 0.193351 7.926 0.0000

Log-Likelihood value: -621.9115 # of obs.: 479

Implied transition probability of staying in state one : 0.9467; in state two: 0.7676

Table 7 Estimation of Markov Switching Model: lagK=1, passband= 2π12 ,
2π
2 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 9.9882 1 0.0016

in state two 0.0092 1 0.9234

No ARCH(1) in residuals in state one 2.1377 1 0.1437

in state two 1.4615 1 0.2267

No AR(1) and ARCH(1) in both states 12.6773 4 0.0130

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.093496 0.021771 4.295 0.0000

μ -0.289540 0.117931 -2.455 0.0141

α 2.031778 0.105717 19.219 0.0000

α 1.487239 0.108531 13.703 0.0000

σ 0.284500 0.011534 24.666 0.0000

σ 1.035998 0.073706 14.056 0.0000

Log-Likelihood value: -266.6184 # of obs.: 480

Implied transition probability of staying in state one: 0.9789; in state two: 0.9315

Table 8 Estimation of Markov Switching Model: lagK=0, passband= 2π96 ,
2π
18 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 329.2961 1 0.0000

in state two 140.6161 1 0.0000

No ARCH(1) in residuals in state one 135.8444 1 0.0000

in state two 60.3336 1 0.0000

No AR(1) and ARCH(1) in both states 446.1956 4 0.0000

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ -0.009204 0.006683 -1.377 0.1684

ϕ 0.947211 0.038573 24.557 0.0000

μ 0.028452 0.037744 0.754 0.4510

ϕ 0.997802 0.034484 28.935 0.0000

α 1.884400 0.318420 5.918 0.0000

α 1.272363 0.127120 10.009 0.0000

σ 0.061765 0.012973 4.761 0.0000

σ 0.238799 0.058994 4.048 0.0001

Log-Likelihood value: 461.3215 # of obs.: 479

Implied transition probability of staying in state one: 0.9702; in state two: 0.8984

Table 9 Estimation of Markov Switching Model: lag K=1, passband= 2π96 ,
2π
18 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 326.0702 1 0.0000

in state two 166.5462 1 0.0000

No ARCH(1) in residuals in state one 161.5971 1 0.0000

in state two 61.3015 1 0.0000

No AR(1) and ARCH(1) in both states 440.6322 4 0.0000

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.039724 0.049567 0.050 0.4229

μ -4.638722 0.429257 -10.806 0.0000

α 2.843678 0.300776 9.454 0.0000

α 0.632870 0.674055 0.939 0.3478

σ 1.066225 0.039122 27.254 0.0000

σ 0.912002 0.192502 4.738 0.0000

Log-Likelihood value: -720.6579 # of obs.: 480

Implied transition probability of staying in state one: 0.9978; in state two: 0.7366

Table 10 Estimation of Markov Switching Model: lagK=0, passband= 2π96 ,
2π
2 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 0.0761 1 0.7827

in state two 12.7162 1 0.0004

No ARCH(1) in residuals in state one 7.2408 1 0.0071

in state two 0.3163 1 0.5738

No AR(1) and ARCH(1) in both states 283.6656 4 0.0000
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Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ -0.005808 0.036867 -0.158 0.8748

ϕ -0.348756 0.055134 -6.326 0.0000

μ -0.006848 0.150284 -0.046 0.9637

ϕ -0.096412 0.169189 -0.570 0.5688

α 1.614109 0.423039 3.816 0.0001

α 0.730825 0.256415 2.850 0.0044

σ 0.720943 0.071872 10.031 0.0000

σ 1.532536 0.193351 7.926 0.0000

Log-Likelihood value: -621.9115 # of obs.: 479

Implied transition probability of staying in state one : 0.9467; in state two: 0.7676

Table 7 Estimation of Markov Switching Model: lagK=1, passband= 2π12 ,
2π
2 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 9.9882 1 0.0016

in state two 0.0092 1 0.9234

No ARCH(1) in residuals in state one 2.1377 1 0.1437

in state two 1.4615 1 0.2267

No AR(1) and ARCH(1) in both states 12.6773 4 0.0130

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.093496 0.021771 4.295 0.0000

μ -0.289540 0.117931 -2.455 0.0141

α 2.031778 0.105717 19.219 0.0000

α 1.487239 0.108531 13.703 0.0000

σ 0.284500 0.011534 24.666 0.0000

σ 1.035998 0.073706 14.056 0.0000

Log-Likelihood value: -266.6184 # of obs.: 480

Implied transition probability of staying in state one: 0.9789; in state two: 0.9315

Table 8 Estimation of Markov Switching Model: lagK=0, passband= 2π96 ,
2π
18 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 329.2961 1 0.0000

in state two 140.6161 1 0.0000

No ARCH(1) in residuals in state one 135.8444 1 0.0000

in state two 60.3336 1 0.0000

No AR(1) and ARCH(1) in both states 446.1956 4 0.0000

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ -0.009204 0.006683 -1.377 0.1684

ϕ 0.947211 0.038573 24.557 0.0000

μ 0.028452 0.037744 0.754 0.4510

ϕ 0.997802 0.034484 28.935 0.0000

α 1.884400 0.318420 5.918 0.0000

α 1.272363 0.127120 10.009 0.0000

σ 0.061765 0.012973 4.761 0.0000

σ 0.238799 0.058994 4.048 0.0001

Log-Likelihood value: 461.3215 # of obs.: 479

Implied transition probability of staying in state one: 0.9702; in state two: 0.8984

Table 9 Estimation of Markov Switching Model: lag K=1, passband= 2π96 ,
2π
18 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 326.0702 1 0.0000

in state two 166.5462 1 0.0000

No ARCH(1) in residuals in state one 161.5971 1 0.0000

in state two 61.3015 1 0.0000

No AR(1) and ARCH(1) in both states 440.6322 4 0.0000

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.039724 0.049567 0.050 0.4229

μ -4.638722 0.429257 -10.806 0.0000

α 2.843678 0.300776 9.454 0.0000

α 0.632870 0.674055 0.939 0.3478

σ 1.066225 0.039122 27.254 0.0000

σ 0.912002 0.192502 4.738 0.0000

Log-Likelihood value: -720.6579 # of obs.: 480

Implied transition probability of staying in state one: 0.9978; in state two: 0.7366

Table 10 Estimation of Markov Switching Model: lagK=0, passband= 2π96 ,
2π
2 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 0.0761 1 0.7827

in state two 12.7162 1 0.0004

No ARCH(1) in residuals in state one 7.2408 1 0.0071

in state two 0.3163 1 0.5738

No AR(1) and ARCH(1) in both states 283.6656 4 0.0000
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Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.037448 0.100012 0.374 0.7081

ϕ -0.104763 0.182284 -0.575 0.5655

μ -0.123096 0.249174 -0.494 0.6213

ϕ 0.552941 0.220038 2.513 0.0120

α 2.164467 1.037087 2.087 0.0369

α 1.204721 0.446357 2.699 0.0070

σ 0.984642 0.107822 9.132 0.0000

σ 1.614181 0.631742 2.555 0.0106

Log-Likelihood value: -714.0702 # of obs.: 479

Implied transition probability of staying in state one: 0.9848; in state two: 0.8858

Table 11 Estimation of Markov Switching Model: lagK=1, passband= 2π96 ,
2π
2 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 6.6071 1 0.0102

in state two 3.1374 1 0.0765

No ARCH(1) in residuals in state one 7.0750 1 0.0078

in state two 0.2480 1 0.6185

No AR(1) and ARCH(1) in both states 13.6935 4 0.0083

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.015548 0.056555 0.275 0.7834

μ -0.087890 0.328173 -0.268 0.7888

ϕ 0.598596 0.248715 2.407 0.0161

α 2.605718 0.557654 4.673 0.0000

α 1.549390 0.851682 1.819 0.0689

σ 1.021331 0.053686 19.024 0.0000

σ 1.750022 0.202081 8.660 0.0000

Log-Likelihood value: -714.0702 # of obs.: 479

Implied transition probability of staying in state one: 0.9954; in state two: 0.9394

Table 12 Estimation of Markov Switching Model: K=1, ϕ=0, passband= 2π96 ,
2π
2 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 1.7539 1 0.1854

in state two 1.9011 1 0.1680

No ARCH(1) in residuals in state one 9.0109 1 0.0027

in state two 0.7520 1 0.3858

No AR(1) and ARCH(1) in both states 11.1123 4 0.0253
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Explanatory variables :  no lagged depedent variable.
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Explanatory variables :  a lagged depedent variable K = 1.
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Explanatory variables :  lagged depedent variables K = 2
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Explanatory variables : a lagged dependent var. K = 1, passband [0, 2 /13].
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Figure 1 Smoothed Probabilities: Non-Scheduled Worked Hours (Seasonally Adjusted)



Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.037448 0.100012 0.374 0.7081

ϕ -0.104763 0.182284 -0.575 0.5655

μ -0.123096 0.249174 -0.494 0.6213

ϕ 0.552941 0.220038 2.513 0.0120

α 2.164467 1.037087 2.087 0.0369

α 1.204721 0.446357 2.699 0.0070

σ 0.984642 0.107822 9.132 0.0000

σ 1.614181 0.631742 2.555 0.0106

Log-Likelihood value: -714.0702 # of obs.: 479

Implied transition probability of staying in state one: 0.9848; in state two: 0.8858

Table 11 Estimation of Markov Switching Model: lagK=1, passband= 2π96 ,
2π
2 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 6.6071 1 0.0102

in state two 3.1374 1 0.0765

No ARCH(1) in residuals in state one 7.0750 1 0.0078

in state two 0.2480 1 0.6185

No AR(1) and ARCH(1) in both states 13.6935 4 0.0083

Parameter Estimate (1) Standard Error (2)* (1)/(2) p-value

μ 0.015548 0.056555 0.275 0.7834

μ -0.087890 0.328173 -0.268 0.7888

ϕ 0.598596 0.248715 2.407 0.0161

α 2.605718 0.557654 4.673 0.0000

α 1.549390 0.851682 1.819 0.0689

σ 1.021331 0.053686 19.024 0.0000

σ 1.750022 0.202081 8.660 0.0000

Log-Likelihood value: -714.0702 # of obs.: 479

Implied transition probability of staying in state one: 0.9954; in state two: 0.9394

Table 12 Estimation of Markov Switching Model: K=1, ϕ=0, passband= 2π96 ,
2π
2 

Note: The dependent variable is the first difference.

* Heteroskedastic consistent estimates. ** See White (1987) and Hamilton (1996).

Specification Testing**

Null Hypothesis χ
stat. d.f. p-value

No AR(1) in residuals in state one 1.7539 1 0.1854

in state two 1.9011 1 0.1680

No ARCH(1) in residuals in state one 9.0109 1 0.0027

in state two 0.7520 1 0.3858

No AR(1) and ARCH(1) in both states 11.1123 4 0.0253
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Explanatory variables :  no lagged depedent variable.
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Explanatory variables :  a lagged depedent variable K = 1.
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Explanatory variables :  lagged depedent variables K = 2
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Explanatory variables : a lagged dependent var. K = 1, passband [0, 2 /13].
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Figure 1 Smoothed Probabilities: Non-Scheduled Worked Hours (Seasonally Adjusted)
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Explanatory variables :  no lagged depedent variable, passband [2 /96, 2 /18].
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Explanatory variables : a lagged depedent variable K = 1, passband [2 /96, 2 /18].
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Explanatory variables : no lagged depedent variable, passband [2 /96, 2 /2].
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Explanatory variables : a lagged dependent var. K = 1, 
11

 = 0, passband [2 /96, 2 /2].
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Figure 2 Smoothed Probabilities: Non-Scheduled Worked Hours (Business Cycle) 『訓蒙図彙』の海外流布と利用

陳 力 衛

ø．はじめに

周知のように，『訓蒙図彙』は儒者中村惕斎 (1629-1701) が京都で出版し

た図解の漢和対訳の識字啓蒙書で，百二十年間にわたって初版 (1666)，再

版 (1695)，三版 (1789) が刊行されていて，江戸時代において確たる位置を

占めている。寛文 6 年 (1666) の初版は 20 巻 14 冊からなり，半葉を上下

に分けて 2枚の図を描き，子どもや初学者でもわかりやすいよう，漢字の

横には仮名で音読みを記し，和名と漢文による説明をその下に記している。

採録された項目語数は 1,484にのぼり，天文・地理・居処・人物・身体・

衣服・宝貨・器用（4巻）・畜獣・禽鳥・龍魚・蟲介・米穀・菜蔬・果蓏・

樹竹・花草といった意義分類で構成されている。元禄 8 年 (1695) に出版

された第二版『頭書増補訓蒙図彙』では雑類を加えて 21 巻 10 冊となった

だけでなく，複数の図をひとつにまとめて大きく描き，図の中に名称（漢

字，音読み，和名）を書き，説明は上部に小さく書くように，字体と様式と

が大きく変わった。そして初版が出て以来百二十年あまり，第三版『頭書

増補訓蒙図彙大成』が出版されたのは寛政元年 (1789) で，すでに編者中

村惕斎の亡き後であった。これも第二版の形式を踏襲し，増補改訂を加え

た 21 巻 10 冊からなっている。

このような挿絵付きの漢和両語による啓蒙書は日本国内だけの流布に止

まらず，日本に関心を持つ外国人にとっても手ごろで便利，かつ視覚的に

楽しめられる入門書として重宝されている。元禄 3 (1690) 年に来日し，2

度の江戸参府を経て，1692 年に離日した和蘭商館の医者ケンペル
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