
Slack in Labor Market and Business Cycles

Takeshi Otsu

Abstract

In this paper, we examine how a focus on an increase in economic slack

contributes to developing clear quantitative guidelines about how to identify a

recession. We use monthly labor-market indicators of composite indices of Japan.

Firstly, we find that ‘Index of Non-Scheduled Worked Hours (Industries Covered)’ is

a promising variable to identify a recession in Japan. Secondly, the unemployment

rate, found useful to identify the modern U.S. recessions in the literature, does not

produce dates of the turning points consistent with the official reference dates of

Japan.
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1 Introduction

The study of aggregate fluctuations in economy has been a central subject of

economics since the nineteenth century (see Persons, 1926). Burns and Mitchell

(1946) is a compilation of extensive works the NBER researchers undertook at that

time. It has spawned a voluminous literature on the business cycles. One of the key

concepts is the “reference dates,” the dates of peaks and troughs of business cycles.

Burns and Mitchell (1946, pp. 76-77) explained the importance of dating the peaks

and troughs in business-cycle analysis. Romer and Romer (2019) claimed that the

dates played an important role in establishing the concept of a recession as a

repeated, identifiable phenomenon. The reference dates still remain not only a
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starting point of empirical research, but a great concern from the press and

policymakers. Particularly, significant downturns in economic activity are a

fundamental motivating concern.

In the business-cycle literature, it is important to distinguish a classical cycle

and a growth one, as pointed out by Pagan (1997). The classical cycle consists of

peaks and troughs in the levels of aggregate economic activities, often represented

by the gross national product (GDP). On the other hand, the growth cycle exists in

the detrended series, on which the real business-cycle literature focuses. The two

types of cycles show different cyclical timing in general, that is, different dates of

peaks and troughs. When a series has a cyclical component around a deterministic

upward trend, typical as in economic data, detrending would make its cyclical

peaks earlier, while delaying its cyclical troughs (see Bry and Boschan, 1971, p. 11).

The reference dates of the business cycle, officially published in the U.S. and

Japan, conceptually correspond to the timing of peaks and troughs of the classical

cycle. For example, the NBER focuses on peaks and troughs in the level of

economic activity
1)
. The basic dating procedure, widely used in official agencies

and academic researchers, is developed by the National Bureau of Economic

Research (NBER) in the U.S. It applies the Bry-Boschan procedure (see Bry and

Boschan, 1971) to determine turning points of several economic time series selected

as coincident indicators. Dates of these turning points are typically pinned down

by examining a historical diffusion index that shows a share of the number of

series with a positive change, the so-called expanding series. Pagan (1997, p. 3)

argued against detrending transformation of data, because it is not appropriate to

analyze and interpret the growth cycle, citing the business-cycle characteristics

based on the official reference dates.

Fabricant (1972) suggested defining a recession as a decline in the proportion

of available resources employed in production, or as a widening of the gap

between potential and actual output, rather than as a decline in aggregate economic

activity relative to its trend. Following this line, Romer and Romer (2019) proposed

that the NBER should consider replacing its emphasis on a decline in economic

activity with a focus on a large and rapid rise in economic slack, claiming that it

lead to a narrower and more precise definition of a recession that is more firmly

grounded in modern understanding of macroeconomic fluctuations. They showed

some supportive evidence for the United States and Japan in the modern low-

growth era. They argued that it appeared better suited to identifying episodes of

interest in settings where trend growth is low as well as more closely

corresponding to how both economists and the public think of a recession.

In this paper, we examine how a focus on an increase in economic slack

contributes to developing clear quantitative guidelines about how to identify a

recession. We attempt to nail down what variables are useful for analysis of

recessions as well as economic slack. We use labor-market data of Japan that has

recorded a very low rate of economic growth for more than a quarter of century.

We use monthly data of the leading, the coincident, and the lagging indicators,

instead of quarterly data that Romer and Romer (2019) used, to enhance

comparison with the reference dates published in monthly base.

The main findings are as follows. Firstly, ‘Index of Non-Scheduled Worked

Hours (Industries Covered)’ is a promising variable to identify a recession in Japan.

Secondly, the unemployment rate, which Romer and Romer (2019) found useful to

find the modern U.S. recessions, does not produce dates of the turning points

consistent with the official reference dates of Japan.

The rest of the paper is organized as follows. In section 2, we discuss data for

analysis. We use individual indicators of the composite indices, which are related1) The NBER press release on June 8, 2020: http://www2.nber.org/cycles/june2020.pdf
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to the labor market in Japan. Section 3 briefly explains the filtering methods used

to estimate economic slack. In section 4, we compare the estimated dates of peaks

and troughs with the official reference dates to investigate whether we can find

economic variables useful for recession identification. The final section is

allocated to discussion.

2 Slack in Labor Market: Data

To measure economic slack, we use time series related to labor market,

included in the composite indices of Japan (see Table 2). The reason to use labor-

market data is that labor market conditions reflect overall economic slack because

all industries use labor. Although capacity utilization ratio can be used, its

coverage is limited to manufacturing, and removed from the individual indicators

of the composite indices in October 2011. Therefore, we focus on the labor-related

variables.

Further, Romer and Romer (2019) found that the unemployment rate was

useful to study a recession in terms of economic slack in the U.S. They argued that

trend growth has been relatively steady at a moderately positive level for the

modern United States, and that the recessions are all characterized by large and

rapid increases in the unemployment rate. Further, they claimed that a focus on

such a characterization does not alter the chronology of peaks and troughs of the

U. S. business cycles in any important way. It is true, historically, that the

unemployment rate was used extensively to date recessions in the early postwar

period. But, it has played no role in the dating process since it was changed to a

lagging indicator in 1975.

In Japan, the unemployment rate has been introduced as a lagging indicator in

August 1984. Since the growth rate of Japan is less than 1% on average for the last

two decades, a mild shortfall from the growth trend leads to a recession. Therefore,

it is possible for the unemployment rates to characterize recent recessions, and it

would be interesting to reevaluate usefulness of the unemployment in business-

cycle analysis.

A caveat is in order. In January 2018, it was revealed that officials at Ministry

of Health, Labor and Welfare had incorrectly conducted fundamental statistical

survey on labor-related conditions since 2004. Then, in our data set, there are two

indicators that are susceptible to this incorrect compilation. One is ‘Index of Non-

Scheduled Worked Hours’ and the other ‘Index of Regular Workers Employment

(Change from Previous Year).’ According to Economic and Social Research Institute

(ESRI), affiliated with the Cabinet Office, Government of Japan, it has used the

corrected values published by the Monthly Labor Survey since January 2019 for

the time period from January 2012 onward as a remedy for the faulty data problem.

The earlier part of the series than the correction is connected by a link coefficient

method. Such a remedy makes these series good enough for our analysis. Thus, we

use them in the later analysis.

In addition, the reason that we choose labor-related variables from the

individual indicators of composite indices is that they are supposed to have strong

relation with business cycles. ESRI routinely examines and revises the

composition of indicators. The latest revision, the 12th revision, was made in July

2020. All the individual indicators are available since January 1975, amounting to

more than 500 sample points for each series, which would be long enough for our

analysis.

We attempt to estimate economic slack with series discussed above. As

Romer and Romer (2019, see p. 12) discussed, a recession can be defined as a

sustained decline in the rate of growth of aggregate economic activity relative to its

long-term trend. Therefore, the ‘slack’ concept is better suited to the growth cycles

than the level cycles. In this interpretation, the growth cycles are deemed detrended
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business cycles because a recession is interpreted as a part of business cycle. We

use bandpass filters to suppress a secular trend and noise components and to

extract detrended growth cycles. Following Burns and Mitchell (1946), the

business cycles are assumed to range from 18 months (1.5 years) to 96 months (8

years), while the secular trend corresponds to the longer-cycle components and the

noise to the shorter ones. The technical details are given in section 3.

We compare dates of turning points in the growth cycles with those of the

reference dates to investigate usefulness of economic slack in identification of a

recession. The reference dates of business cycles in Japan are determined by ESRI

that organizes the Investigation Committee for Business Cycle Indicators to

inspect historical diffusion indexes calculated from selected series of coincident

indexes and other relevant information. Typically, a final decision on turning

points is made about two to three years later. To make a historical diffusion index,

the peaks and troughs of each individual time series are dated by the Bry-Boschan

method. Thus, the reference dates correspond to those of peaks and troughs of the

classical cycles, that is, the Burns-and-Mitchell-type cycle based on the level of

aggregate economic activity. As pointed by Canova (1999, 1994), the dates of peaks

and troughs in the growth cycles deviate from those in the level cycles by two or

three quarters, which is confirmed by Otsu (2013). Therefore, it is expected that a

monthly comparison would show a deviation by 6 to 9 months.

Table 3 shows the reference dates of peaks and troughs identified by ESRI. It

also contains periods of expansion, contraction, and duration of a complete cycle

(trough to trough). There are 15 peak-to-trough phases identified after World War II.

In these phases, the average period is about 36 months for expansion, 16 for

contraction, and 52 for the complete cycle.

Finally, we also refer to the composite index of consistent indicators for

judgement on usefulness of the growth cycles to find a recession. The composite

coincident index is complied by ESRI, based on individual consistent indicators on

and after 1980, and available from 1985 onward for the 12th-revision data. In our

analysis, we use the indicators in Table 2 from January 1980 to January 2020 to

enhance comparison with the composite index. All data are obtained from the

website of ESRI
2)
.

3 Departure from Secular Trend: Filtering Methods

In the literature, there are various methods to extract and measure cyclical

information. Canova (2007) gives a concise description of methods frequently used

in macroeconomic analyses. We use bandpass filters to compute departure from

secular trends. They allow us to extract business-cycle components and suppress

secular trends as well as all the cyclical components shorter than and equal to the

seasonal cycles. Therefore, it is possible to obtain detrended components less noisy

as much as possible. The cyclical components, if properly extracted, would

incorporate all the turns to be identified as peaks or troughs of businesss cycles.

We use three types of bandpass filters among others: the Christiano-

Fitzgerald filter (hereafter, CF filter: Christiano and Fitzgerald, 2003), the Hamming-

windowed filter (Iacobucci and Noullez, 2005) and the Butterworth filters (e.g. Gomez,

2001; Pollock, 2000). Note that the sine-based Butterworth filter with the second

order is equivalent to the Hodrick-Prescott (hereafter, HP) filter proposed by

Hodrick and Prescott (1997) (see Gomez, 2001, p. 336).

Canova (1994) examined performance of 11 different detrending methods to

replicate NBER dating, assuming that the detrending removes a secular

component. Similar analyses are conducted by Canova (1999) with 12 methods

including Hamilton (1989)’s procedure. They found that the HP filter and a

2) Indexes of Business Conditions: https://www.esri.cao.go.jp/en/stat/di/di-e.html, Dec.

23, 2020.
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frequency domain filter as an approximation to the Butterworth filter (see Canova,

1998, p. 483) would be the most reliable tools to reproduce the NBER dates. Otsu

(2013) conducted a comparative analysis among bandpass filters such as the

Christiano-Fitzgerald filter (Christiano and Fitzgerald, 2003), the Hamming-

windowed filter (Iacobucci and Noullez, 2005) and the Butterworth filters (e.g. Gomez,

2001; Pollock, 2000), using Japanese real GDP data. It showed that the Butterworth

filters give the business-cycle dates closest to the official reference dates.

Now we review properties of the three filters in turn: Christiano-Fitzgerald

filter, Hamming-windowed filter, and Butterworth filters. To begin with, we

consider the following orthogonal decomposition of the observed series x:

x=y+x
〜

 (1)

where y is a signal whose frequencies belong to the interval

{[−b, −a]∪[a, b]}∈[−π, π], while x
〜

 has the complementary frequencies.

Suppose that we wish to extract the signal y. The Wiener-Kolmogorov theory of

signal extraction, as expounded by Whittle (1983, Chapter 3 and 6), indicates y can

be written as:

y=B(L)x (2)

B(L)=




BL
，Lx≡x (3)

In polar form, we have

B(e)=
1, for ω∈[−b, −a]∪[a, b]

0, otherwise
(4)

where 0≦a≦b≦π. In the business-cycle literature, the values of a and b are

often set to the frequencies that correspond to 8 and 1.5 years, respectively. In case

of monthly data we use later, the frequency range is set to  2π96 ,
2π
18 .

Theoretically, we need an infinite number of observations, x’s, to compute

y. In practice, the filtering methods approximate y by y

, a filtered series with a

finite filter. To estimate y by y

, the Christiano-Fitzgerald filtering is performed in

the time domain with truncation at both ends of the sample, while other filtering

methods in the frequency domain are implemented under the circularity

assumption.

Since details of the CF filter and the Hamming-windowed filter are given in

Christiano and Fitzgerald (2003) and in Iacobucci and Noullez (2005), we only

briefly review them. As for Butterworth filters, we describe them in a little detail.

Then, we discuss detrending and boundary treatment.

3.1 Christiano-Fitzgerald Filter

Christiano and Fitzgerald (2003) sought an optimal linear approximation with

finite sample observations. They solved a minimization problem based on the

mean square error (MSE) criterion in the frequency domain: minimization of a

weighted sum of differences between the ideal bandpass-filter’s weights and their

approximates, using a spectral density of observations as a weight. They derived

optimal filter weights, assuming a difference-stationary process of observed data

with a trend or a drift removed if any.

In their empirical investigations, they examined the effects of the time-

varying weights, the asymmetry, and the assumption on the stochastic process.

They compared variance ratios and correlations between the components extracted

by the Christiano-Fitzgerald filters and the theoretical components based on the

data generating process of observations. To evaluate the second moments of the

theoretical components, they used the Riemann sum in the frequency domain.

They found that the time-varying weights and the asymmetry of the filter

contribute to a better approximation, pointing out that the time-varying feature is
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contribute to a better approximation, pointing out that the time-varying feature is
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relatively more important. Further, they claimed that the time-varying weights

should not introduce severe nonstationarity in the filter approximation because the

variance ratios do not vary much through the time. The correlation between the

filtered-out components and the theoretical ones at different leads and lags

symmetrically diminishes as the leads and lags go far away, which might indicate

that the degree of asymmetry was not great. Finally, one of the Christiano-

Fitzgerald filters derived under the Random-Walk data generating process, the so-

called RandomWalk filter, gives a good approximation to the optimal filtering that

explicitly used the estimated coefficients of an optimal moving average process

determined empirically. Therefore, they claimed that we could use the Random

Walk filter without inspecting the data generating process even if the random walk

assumption was false.

As argued in Otsu (2015), the cyclical components extracted by CF might be

distorted in magnitude and timing. Its gain function, defined as the modulus of the

frequency response function, shows large ripples over the target ranges, indicating

a large distortion in estimating the cyclical components. The CF filter also shows

leakage effects (see Baxter and King, 1999, p. 580) over higher frequencies of more

than 8 periods per cycle. Further, phase shifts are indicated by values of its phase

function, defined as arctangent of the ratio of the real-valued coefficient of the

imaginary part of the frequency response function to the real part value.

3.2 Hamming-Windowed Filter

Iacobucci and Noullez (2005) claimed that the Hamming-windowed filter be a

good candidate for extracting frequency-defined components. The proposed filter

has a flatter response over the passband than other filters in the literature, such as

the HP filter (Hodrick and Prescott, 1997), the BK filter (Baxter and King, 1999), and

the CF filter. This means that it has no exacerbation (see Baxter and King, 1999, p.

580) and eliminates high-frequency components better than the other three filters.

The Hamming-windowed filtering is implemented in the frequency domain.

The procedure is described as follows. First, we subtract, if necessary, the least-

square regression line to detrend the observation series to make it suitable for the

Fourier transform. Second, we implement the Fourier transform of the detrended

series, Third, we convolve the ideal response with a spectral window to find the

windowed filter response in the frequency domain. The window is the so-called

Tukey-Hamming window (Priestly, 1981, pp. 433-442).

3.3 Butterworth Filters

Pollock (2000) has proposed the tangent-based Butterworth filters in the two-

sided expression, which are called rational square-wave filters. The one-sided

Butterworth filters are widely used in electrical engineering, and well documented

in standard text books, such as Oppenheim and Schafer (1999) and Proakis and

Manolakis (2007). The two-sided version guarantees phase neutrality or no phase

shift. It has finite coefficients, and its frequency response is maximally flat over

the pass band: the first (2n−1) derivatives of the frequency response are zero at

zero frequency for the nth-order filter. The filter could stationarize an integrated

process of order up to 2n. The order of the filter can be determined so that the edge

frequencies of the pass band and/or the stop band are aligned to some designated

frequencies. Further, Gomez (2001) pointed out that the two-sided Butterworth

filters could be interpreted as a class of statistical models called UCARIMA (the

unobserved components autoregressive-integrated moving average) in Harvey (1989, p.

74). Since the two-sided Butterworth filters are not so often used in the literature,

we present relevant equations to look at them a little bit more closely.

The lowpass filter is expressed as
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BFT=
(1+L)


(1+L)



(1+L)

(1+L)


+λ(1−L)


(1−L)

 (5)

where Lx=x, and Lx=x. Similarly, the highpass filter is expressed

as

BFT=
λ(1−L)


(1−L)



(1+L)

(1+L)


+λ(1−L)


(1−L)

 (6)

Note BFT+BFT=1, which is the complementary condition discussed by

Pollock (2000, p. 321). Here, λ is the so-called smoothing parameter. We observe

that the Butterworth highpass filter in eq.(6) can handle nonstationary components

integrated of order 2n or less. Let ω the cutoff point at which the gain is equal to

0.5. It is shown

λ={tan(ω/2)}


(7)

To see this, we replace the L by e
in eq.(5) to obtain the frequency response

function in polar form as

ϕ(e
; λ, n)=

1

1+λ(i(1−e)/(1+e))
 (8)

=
1

1+λ{tan(ω/2)}
 (9)

Here, it is easy to see that eq.(7) holds when ϕ(e
)=0.5. We also observe in

eq.(9) that the first (2n−1) derivatives of ϕ(e
) are zero at ω=0; thus, this

filter is maximally flat. Note that the gain is the modulus of the frequency response

function, and indicates to what degree the filter passes the amplitude of a

component at each frequency. The Butterworth filters considered here are

symmetric and their frequency response functions are non-negative. Therefore, the

gain is equivalent to the frequency response. Then, we can use eq.(9) to specify ω

so that the gain at the edge of the pass band is close to one and that of the stop band

close to zero. Let the pass band [0, ω], and the stop band [ω, π], where ω is

smaller than ω. As in Gomez (2001, p. 372), we consider the following conditions

for some small positive values of δ and δ,

1−δ<ϕ(e
, λ, n)≦1 for ω∈[0, ω] (10)

0≦ϕ(e
, λ, n)<δ for ω∈[ω, π] (11)

That is, we can control leakage and compression (see Baxter and King, 1999, p. 580)

effects with precision specified by the values of δ and δ. These conditions can be

written as follows:

1+ tan(ω/2)
tan(ω/2) 



=
1

1−δ
(12)

1+ tan(ω/2)
tan(ω/2) 



=
1
δ

(13)

Then, we can solve for the cutoff frequency (ω) and the filter’s order (n), given

ω, ω, δ and δ. The closer to zeros both δ and δ, the smaller the leakage and

the compression effects. If n turns out not an integer, the nearest integer is

selected.

The Butterworth filters could be based on the sine function. Instead of eq.(5)

and eq. (6), the lowpass and the highpass filters can be written as follows,

respectively.

BFS=
1

1+λ(1−L)

(1−L)

 (14)

BFS=
λ(1−L)


(1−L)



1+λ(1−L)

(1−L)

 (15)

where

λ={2sin(ω/2)}


(16)
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These are the so-called sine-based Butterworth filters. When n is equal to two, eq.

(15) is the HP cyclical filter, derived in King and Rebelo (1993, p. 224). Thus, as

pointed out by Gomez (2001, p. 336), the sine-based Butterworth filter with order

two (n=2) can be viewed as the HP filter. As in the case of the tangent-based

one, the cutoff point, ω, can be determined with the following conditions:

1+ sin(ω/2)
sin(ω/2) 



=
1

1−δ
(17)

1+ sin(ω/2)
sin(ω/2) 



=
1
δ

(18)

We observe that the Butterworth highpass filter in eq. (6) or eq. (15) can

handle nonstationary components integrated of order 2n or less. Thus, the HP

filter can stationarize the time series with unit root components up to the fourth

order. Gomez (2001, p. 367) claimed that the BFT would give better approximations

to ideal low-pass filters than the BFS. A simulation study in Otsu (2007) confirmed

it.

In the paper, we apply the Butterworth filters to extraction of components

over a certain band [ω, ω], where ω is smaller than ω. The bandpass filter is

obtained as the difference between two highpass filters in eq.(6), or two lowpass

filters in eq.(5) with different values of λ, as in Baxter and King (1999, p. 578).

Suppose a lowpass filter has the pass band [0, ω] and the stop band [ω, π].

Here, ω indicates a frequency at which the cycle is longer by some periods than

at ω and corresponds to ω in eq.(12), while ω corresponds to ω in (13). This

lowpass filter has the cutoff frequency of ω and the order of n determined in eq.

(12) and (13). Let λ the corresponding value of λ. Similarly, another lowpass filter

has the pass band [0, ω] and the stop band [ω, π]. Here, ω indicates a

frequency at which the cycle is shorter by some periods than at ω. In short, we

assume that ω<ω<ω<ω. ω corresponds to ω in (12), and ω

corresponds to ω in (13). The filter has the cutoff frequency of ω and the order

of n. Then, the value of λ is λ. The bandpass filter, BFT(λ, n, λ, n), can

be obtained as

BFT(λ, n, λ, n)=BFT(λ, n)−BFT(λ, n) (19)

The corresponding frequency response is expressed as

h(ω; λ, n, λ, n)=ϕ(e
; λ, n)−ϕ(e

; λ, n) (20)

We can obtain the bandpass filter for the sine-type, BFS(λ, n, λ, n), and its

frequency response in a similar manner.

Alternatively, we sequentially apply the highpass filter with a lower cutoff

frequency to a series, and then further apply the lowpass filter with a higher cutoff

frequency to the filtered series. Although Pedersen (2001, p. 1096) reported that the

sequential filtering has less distorting effects than use of the linear combination of

the filters, the empirical results in the following sections do not change whether we

use the difference method (the linear combination) or the sequential method. Yet

another method is to convert the lowpass filter to the bandpass filter by the

frequency transformation, described in a standard textbook (e. g. Proakis and

Manolakis, 2007, p. 733), and explicitly obtain the bandpass filter (see Gomez, 2001, p.

371). This filter, however, has only one order parameter, implicitly assuming n is

equal to n. But, the values of n and n are very different in fact (see Otsu, 2015).

Therefore, we would not use the transformation method later in the paper. Here,

we use the difference method, because it is easy to control leakage and

compression effects at a specific frequency.

We need specify two parameter values, n and λ, in eq. (5) or eq. (6) to

implement the Butterworth filtering. We obtain these values from eqs.(7), (12) and

(13) for target frequency bands, that is, values of ω and ω with given values of δ
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and δ. We set both δ and δ to 0.01.

In the paper, we attempt to extract cyclical components with periods per cycle

of 1.5 years to 8 years. In terms of a period per cycle (p), a frequency (ω) is

expressed as

2π
p

. Therefore, using the notation in the previous section, the target

band, [ω, ω], is  2π96 ,
2π
18  in months. Following Otsu (2015), we set ω to

2π
132

and ω to

2π
12

. In this case, the transition bands are  2π
132

,
2π
96  and

 2π18 ,
2π
12 , respectively. Setting ω to ω in eq.(12) and ω to ω in eq.(13), we

find n and ω. λ is obtained from eq.(7). Similarly, we find n and λ by setting

ω to ω in eq.(12) and ω to ω in eq.(13), together with eq.(7). In a similar way,

we compute the parameter values of the sine-based Butterworth filter from eq.(16),

eq.(17) and eq.(18).

Two remarks are in order. As is always the case, the sine-based filter

commands a higher order than the tangent-based on under the same precision

values of δ and δ. In addition, as already mentioned, the well-known HP filter is

viewed as the sine-based Butterworth filter with an order of two. This implies that

the HP filter either does not preserve the precision or requires a very wide

transition band. In the literature, it is pointed out that it might mislead researchers

to false empirical results (Harvey and Jaeger, 1993), or it could generate spurious

business-cycle dynamics (Cogley and Nason, 1995). In the paper, we use the HP filter

for completeness.

Turning to implementation, we can implement the Butter-worth filtering

either in the time domain or in the frequency domain. Following Pollock (2000),

Otsu (2007) implemented it in the time domain, and found that when the cycle

period is longer than seven, the matrix inversion is so inaccurate that it is

impossible to control leakage and compression effects with a certain precision

specified by eq.(12) and eq.(13), or eq.(17) and eq.(18). Further, the filters at the

endpoints of data have no symmetry due to the finite truncation of filters. This

implies that the time-domain implementation introduces phase shifts. Therefore,

we do not choose the time-domain filtering.

Alternatively, we can implement the Butterworth filtering in the frequency

domain. In the frequency-domain filtering, cyclical components are computed via

the inverse discrete Fourier trans-form, using the Fourier-transformed series with

the frequency response function as their weights. In contrast to the time-domain

filtering, the frequency-domain filtering does not introduce any phase shifts, as the

theoretical background of the symmetrical filters dictates. For the frequency-

domain procedures to work well, it is required that a linear trend be removed and

circularity be preserved in the time series, which we discuss next.

3.4 Detending Method

To obtain better estimates of cyclical components, it is desirable to remove a

linear trend in the raw data. The linear regression line, recommended by Iacobucci

and Noullez (2005), is often used for trend removal. As shown by Chan, Hayya,

and Ord (1977) and Nelson and Kang (1981), however, this method can produce

spurious periodicity when the true trend is stochastic. Another widely-used

detrending method is the first difference, which reweighs toward the higher

frequencies and can distort the original periodicity, as pointed out by Baxter and

King (1999), Chan, Hayya, and Ord (1977), and Pedersen (2001).

Otsu (2011) found that the drift-adjusting method employed by Christiano and

Fitzgerald (2003, p. 439) could preserve the shapes of autocorrelation functions and

spectra of the original data better than the linear-regression-based detrending.
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and Noullez (2005), is often used for trend removal. As shown by Chan, Hayya,
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There-fore, this detrending method would create less distortion. Let the raw series

z, t=1, ⋯, T. Then, we compute the drift-adjusted series, x, as follows:

x=z−(t+s)μ (21)

where s is any integer and

μ
=

z−z

T−1
(22)

Note that the first and the last points are the same values:

x=x=
Tz−z+s(z−z)

T−1
(23)

In Christiano and Fitzgerald (2003, p. 439), s is set to −1. Although Otsu (2011)

suggested some elaboration on the choice of s, it does not affect the results of our

subsequent analyses in the paper. Thus, we also set s to −1.

It should be noted that the drift-adjusting procedure in eq.(21) would make

the data suitable for filtering in the frequency domain. Since the discrete Fourier

transform assumes circularity of data, the discrepancy in values at both ends of the

time series could seriously distort the frequency-domain filtering. The eq. (23)

implies that this adjustment procedure avoids such a distortionary effect.

3.5 Boundary Treatment

In addition to the detrending method, we make use of another device to

reduce variations of the estimates at ends of the series: extension with a boundary

treatment. As argued by Percival and Walden (2000, p. 140), it might be possible to

reduce the estimates’ variations at endpoints if we make use of the so-called

reflection boundary treatment to extend the series to be filtered. We modify the

reflection boundary treatment so that the series is extended antisymmetrically

instead of symmetrically as in the conventional reflecting rule. Let the extended

series f ,

f=
x if 1≦ j≦T

2x−x if −T+3≦ j≦0
(24)

That is, the T−2 values, folded antisymmetrically about the initial data point, are

appended to the beginning of the series. We call this extension rule the

antisymmetric reflection, distinguished from the conventional reflection.

It is possible to append them to the end of the series. The reason to append the

extension at the initial point is that most filters give accurate and stable estimates

over the middle range of the series. When we put the initial point in the middle part

of the extended series, the starting parts of the original series would have estimates

more robust to data revisions or updates than the ending parts. Since the initial data

point indicates the farthest past in the time series, it does not make sense that the

estimate of the initial point is subject to a large revision when additional

observations are obtained in the future. Otsu (2010) observed that it moderately

reduced compression effects of the Butterworth and the Hamming-windowed

filters. We note that this boundary treatment makes the estimates at endpoints

identically zero when a symmetric filter is applied. We filter the extended series,

f , and extract the last T values to obtain the targeted components.

4 Empirical Analysis

4.1 Dating Algorithm

To identify dates of peaks and troughs, we use a modified version of the Bry-

Boschan (BB) method developed by Bry and Boschan (1971). Otsu (2017)

investigated whether the bandpass filtering could simplify the BB algorithm and

found that it would be a good substitute for smoothing procedures involved in the

BB procedure, such as the 12-month moving average, Spencer filtering, and the

short-term moving average with a span of months defined by Months of Cyclical
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Dominace (see Bry and Boschan, 1971, p. 25). Therefore, it is possible to substantially

shorten the procedure. Table 1 shows the modified procedure. In the following

analysis, we do not put back the deterministic linear trend in Step I, because our

purpose is not to examine changes in the level of economic activity, but those in

economic slack. Furthermore, we use a couple of filtering methods other than the

tangent-based Butterworth filter for comparison.

4.2 Comparison with Reference Dates

Figure 1 through Figure 5 show the business-cycle components of the five

series. On the whole, they move differently from the official coincident composite

index (CCI) after the last official trough of November 2012. In addition, Figure 1 of

‘New Job Offers (Excluding New School Graduates)’ shows dates of a peak and a

trough in the latter half of 2000s that are quite different from those of the official

CCI. Further, the cyclical component of ‘Index of Regular Workers Employment’

tends to show more turning points than those of other series, as shown in Figure 4.

In Figure 5 of ‘Unemployment Rate,’ the troughs tend to lag behind those of the

official reference cycle. It may not be surprising that the two coincident indicators,

‘Index of Non-Scheduled Worked Hours’ and ‘Index of Effective Job Offer Rate,’

produce the cyclical components that are better aligned with the official CCI, as

shown in Figure 2 and Figure 3.

Table 4 and 5 show the estimated dates of peaks and troughs with ‘New Job

Offers (Excluding New School Graduates).’ In the first (‘Official Ref.’) and the second

(‘Official CCI’) columns of Table 4, we find that dates of peaks differ between the

official reference cycle and the official CCI, except March 2012. When we use the

original BB procedure instead of the abridged procedure, we have a similar result

based on the 9th-revision data as shown in Otsu (2019), except that it identified

May’s in 1985 and in 1997 as peaks instead of July in 1985 and March in 1997.

On the other hand, the official dates of troughs are better identified in Table 5.

Although no trough is pinned down around February 1983 that is identified in Otsu

(2019), it would be fair to say that the different dating procedures produce a

qualitatively similar result as a whole. Therefore, the main difference between the

official reference dates and the turning points of the official CCI in Table 4 and 5

comes from the fact that the dating committee uses more information than the CCI.

Turning to the peak dates of the business-cycle components, we find more

dates identified than the official reference dates. They do not identify the official

peaks in 1980, 1985, 2008, and 2018. Since the sample period starts from 1980, it

is not surprising that the first peak is not identified due to insufficient data. Their

deviations from the other peaks of the reference cycle are one or two months at

most.

The last row shows the average deviation in months. For each filtering

method, it is computed by averaging the number of months that is the sum of

absolute differences between the dates of the reference-cycle peaks and the nearest

dates of the peaks in the estimated cycle. It ranges from around 5 to 6 months.

Table 5 shows the dates of troughs. In contrast with the case of peaks, we find

that dates of troughs in the official reference cycle and the official CCI match well,

except in February 1983 and January 1999. The estimated business-cycle

components identify the troughs in 1986, 1993, and 2002, but fail to identify other

official troughs. The average deviations, similarly computed as in the case of

peaks, are different across the filtering methods, ranging from 2.7 to 7.3 months.

Table 6 and 7 show the results for ‘Index of Non-Scheduled Worked Hours.’

The cyclical components well identify the official dates of peaks after 1997, while

better identifying those of troughs. The average deviations in the peak dates are

around 4 months for the cases of the Butterworth, the Hamming-windowed, and

the CF filters, and less than 3 months for the HP filter. They mark smaller
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deviations less than and equal to 2.5 months after 1997 onward. As for the troughs,

the deviations are less than 2 months, slightly smaller for the cases of the

Hamming-windowed and the HP filters.

In Table 8, the peak in 2008 is not identified by the Butterworth and the HP

filters with ‘Index of Effective Job Offer Rate.’ However, in general, the peaks

after 1991 are well identified. The average deviations are slightly larger than those

in Table 6. As for the troughs in Table 9, the reference dates are not well identified,

and the average deviations range from 3.6 to 8.0 months, much larger than those in

Table 7.

The ‘Index of Regular Workers Employment’ seems not useful to identify the

turning points of the official reference cycle. As shown in Table 10 and 11, the

average deviations are much larger than those of the other indicators. Particularly,

they are substantially large in case of the troughs: more than 10 months. The

‘Unemployment Rate’ does not identify the official reference dates, either. In

Table 12 and 13, the peaks in 2000, 2008, and 2012 are well identified with the

cyclical components obtained by the Hamming-windowed and the CF filters.

However, the average deviations range from 3.0 to 4.9 months for the peaks and

from 5.1 to 7.4 months for the troughs. That is, the unemployment rate produces a

chronology of the turning points that is rather different from those of the official

reference cycle. In contrast to the finding of Romer and Romer (2019), it implies

whether a focus on economic slack or on the level of economic activity gives rise

to a different result.

In sum, the variable, ‘Index of Non-Scheduled Worked Hours,’ can be used

to identify the turning points of the business cycles based on economic slack.

Other variables may not be useful to identify a recession on the supposition that the

official reference dates are true.

Finally, we examine how useful the magnitude of deviation from secular

trends is for recession identification. As discussed above, ‘Index of Non-

Scheduled Worked Hours’ gives rise to the dates of turning points closer to the

official reference dates compared to the other series. Then, we show deviation of

the business-cycle components from the secular trends for this series in Table 14

and 15.

In Table 14, the CF and the HP filters indicate negative values, -0.04 and

-0.09, respectively. This implies that the economy reaches the peaks even when the

non-scheduled worked hours are less than a trend, that is, a ‘normal’ level. In many

cases, however, the peaks come up when they go above the normal level.

Particularly, they are well beyond the normal level on the dates close to the official

reference dates. A similar finding comes from Table 15: the economy reaches the

troughs when the index is well below the normal level. In general, a large deviation

is marked around the official reference dates. Therefore, the index can be used as

an indicator of economic slack to locate recessions. Note that the magnitude of

deviation varies across the different filters. Thus, a further investigation is required

to set a specific value of criterion to determine peaks and troughs.

5 Discussion

This paper has examined how a focus on an increase in economic slack

contributes to developing clear quantitative guidelines about how to identify a

recession. We use labor-market data of Japan that has recorded a very low rate of

economic growth for a long time. We use monthly data of the leading, the

coincident, and the lagging indicators, instead of quarterly data used by Romer and

Romer (2019), to enhance comparison with the reference dates published in

monthly base.

The main findings are as follows. Firstly, ‘Index of Non-Scheduled Worked

Hours (Industries Covered)’ is a promising variable to identify a recession in Japan.
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Secondly, the unemployment rate, which Romer and Romer (2019) found useful to

find the modern U.S. recessions, does not produce dates of the turning points

consistent with the official reference dates of Japan.

Note that, in compilation of the coincident composite index, the Investigation

Committee for Business Cycle Indicators, ESRI, decided to replace ‘Index of Non-

Scheduled Worked Hours (Industries Covered)’ with ‘Total Hours Worked (Industries

Covered)’ times ‘Employee [by number of persons engaged in non-agricultural

industries]’ provided by Ministry of Health, Labour and Welfare, Japan, at the

meeting held on July 30, 2020. The new series is to be supplied after January 2021

onward. The committee has argued that the former series shows a downward trend

due to social policies introduced to improve the work-life balance in Japan, and

that it should be replaced by some other variables that would better indicate as a

whole how firms adjust employment and hours worked. Thus, one of the

remaining problems is how such a replacement contributes to identifying

recessions in terms of economic slack.

Another problem is to find a quantitative criterion, that is, the magnitude of

deviation from the normal level, to pin down peaks or troughs. It crucially depends

on how to set the normal level, and might give a very different picture of the

business cycles, compared to one drawn by the official reference cycle. These

problems are left for future research.

Acknowledgements A part of this work is financially supported by Tokubetsu Kenkyu

Josei (Seijo University) under the title of「景気後退の定量的同定に関する研究」.

References

Baxter, M. and R. G. King, 1999, “Measuring business cycles: Approximate band-pass

filters for economic time series,” The Review of Economics and Statistics 81(4), 575-

593.

Bry, G. and C. Boschan, 1971, Cyclical Analysis of Time Series: Selected Procedures and

Computer Programs, Technical Paper 20, NBER, New York.

Burns, A.F. and W. C. Mitchell, 1946, Measuring Business Cycles, NBER Studies in

Business Cycles No. 2, NBER, New York.

Canova, F., 1994, “Detrending and turning points,” European Economic Review 38, 614-

623.

Canova, F., 1998, “Detrending and business cycle facts,” Journal of Monetary Economics

41, 475-512.

Canova, F., 1999, “Does detrending matter for the determination of the reference cycle

and the selection of turning points?” Economic Journal 109, 126-150.

Canova, F., 2007, Methods for Applied Macroeconomic Research, Princeton University

Press, New Jersey.

Chan, H. C., J. C. Hayya, and J. K. Ord, 1977, “A note on trend removal methods: The

case of polynomial regression versus variate differencing,” Econometrica 45, 737-

744.

Christiano, L. J. and T. J. Fitzgerald, 2003, “The band pass filter,” International Economic

Review 44 (2), 435-465.

Cogley, T. and J. M. Nason, 1995, “Effects of the Hodrick-Prescott filter on trend and

difference stationary time series, implications for business cycle research,” Journal of

Economic Dynamics and Control 19, 253-278.

Fabricant, S., 1972. “The ‘Recession’ of 1969-1970.”In Economic Research: Retrospect

and Prospect, Volume I, The Business Cycle Today, edited by Victor Zarnowitz.

New York: NBER, pp. 89-136.

Gomez, V., 2001, “The use of Butterworth filters for trend and cycle estimation in

economic time series,” Journal of Business and Economic Statistics 19(3), 365-373.

Hamilton, J., 1989, “A new approach to the economic analysis of nonstationary time

series and the business cycle,” Econometrica 57, 357-384.

Harvey, A.C., 1989, Forecasting, Structural Time Series Models and the Kalman filter,

Cambridge University Press.

Harvey, A. C. and A. Jaeger, 1993, “Detrending, stylized facts, and the business cycle,”

Journal of Applied Econometrics 8, 231-247.

成城・経済研究 第 232 号（2021 年 3 月）

─ 124 ─

Slack in Labor Market and Business Cycles

─ 125 ─



Secondly, the unemployment rate, which Romer and Romer (2019) found useful to

find the modern U.S. recessions, does not produce dates of the turning points

consistent with the official reference dates of Japan.

Note that, in compilation of the coincident composite index, the Investigation

Committee for Business Cycle Indicators, ESRI, decided to replace ‘Index of Non-

Scheduled Worked Hours (Industries Covered)’ with ‘Total Hours Worked (Industries

Covered)’ times ‘Employee [by number of persons engaged in non-agricultural

industries]’ provided by Ministry of Health, Labour and Welfare, Japan, at the

meeting held on July 30, 2020. The new series is to be supplied after January 2021

onward. The committee has argued that the former series shows a downward trend

due to social policies introduced to improve the work-life balance in Japan, and

that it should be replaced by some other variables that would better indicate as a

whole how firms adjust employment and hours worked. Thus, one of the

remaining problems is how such a replacement contributes to identifying

recessions in terms of economic slack.

Another problem is to find a quantitative criterion, that is, the magnitude of

deviation from the normal level, to pin down peaks or troughs. It crucially depends

on how to set the normal level, and might give a very different picture of the

business cycles, compared to one drawn by the official reference cycle. These

problems are left for future research.

Acknowledgements A part of this work is financially supported by Tokubetsu Kenkyu

Josei (Seijo University) under the title of「景気後退の定量的同定に関する研究」.

References

Baxter, M. and R. G. King, 1999, “Measuring business cycles: Approximate band-pass

filters for economic time series,” The Review of Economics and Statistics 81(4), 575-

593.

Bry, G. and C. Boschan, 1971, Cyclical Analysis of Time Series: Selected Procedures and

Computer Programs, Technical Paper 20, NBER, New York.

Burns, A.F. and W. C. Mitchell, 1946, Measuring Business Cycles, NBER Studies in

Business Cycles No. 2, NBER, New York.

Canova, F., 1994, “Detrending and turning points,” European Economic Review 38, 614-

623.

Canova, F., 1998, “Detrending and business cycle facts,” Journal of Monetary Economics

41, 475-512.

Canova, F., 1999, “Does detrending matter for the determination of the reference cycle

and the selection of turning points?” Economic Journal 109, 126-150.

Canova, F., 2007, Methods for Applied Macroeconomic Research, Princeton University

Press, New Jersey.

Chan, H. C., J. C. Hayya, and J. K. Ord, 1977, “A note on trend removal methods: The

case of polynomial regression versus variate differencing,” Econometrica 45, 737-

744.

Christiano, L. J. and T. J. Fitzgerald, 2003, “The band pass filter,” International Economic

Review 44 (2), 435-465.

Cogley, T. and J. M. Nason, 1995, “Effects of the Hodrick-Prescott filter on trend and

difference stationary time series, implications for business cycle research,” Journal of

Economic Dynamics and Control 19, 253-278.

Fabricant, S., 1972. “The ‘Recession’ of 1969-1970.”In Economic Research: Retrospect

and Prospect, Volume I, The Business Cycle Today, edited by Victor Zarnowitz.

New York: NBER, pp. 89-136.

Gomez, V., 2001, “The use of Butterworth filters for trend and cycle estimation in

economic time series,” Journal of Business and Economic Statistics 19(3), 365-373.

Hamilton, J., 1989, “A new approach to the economic analysis of nonstationary time

series and the business cycle,” Econometrica 57, 357-384.

Harvey, A.C., 1989, Forecasting, Structural Time Series Models and the Kalman filter,

Cambridge University Press.

Harvey, A. C. and A. Jaeger, 1993, “Detrending, stylized facts, and the business cycle,”

Journal of Applied Econometrics 8, 231-247.

成城・経済研究 第 232 号（2021 年 3 月）

─ 124 ─

Slack in Labor Market and Business Cycles

─ 125 ─



Hodrick, R. J. and E.C. Prescott, 1997, “Post-war U.S. business cycles: An empirical

investigation,” Journal of Money, Credit, and Banking 29, 1-16. Also in Discussion

Paper No.451, Department of Economics, Carnegie-Mellon University, Pittsburgh,

PA, 1980.

Iacobucci, A. and A. Noullez, 2005, “A frequency selective filter for short-length time

series,” Computational Economics 25, 75-102.

King, R. G. and S. T. Rebelo, 1993, “Low frequency filtering and real business cycles,”

Journal of Economic Dynamics and Control 17, 207-231.

Nelson, C. R. and H. Kang, 1981, “Spurious periodicity in inappropriately detrended time

series,” Econometrica 49, 741-751.

Oppenheim, A. V. and R. W. Schafer, 1999, Discrete-time signal processing 2nd edition,

Prentice Hall International.

Otsu, T., 2007, “Time-invariant linear filters and real GDP: A case of Japan,” Seijo

University Economic Papers 174, 29-47, The Economic Institute of Seijo University

(Japan).

Otsu, T., 2010, “Separating trends and cycles,” Seijo University Economic Papers 188,

95-158, The Economic Institute of Seijo University (Japan).

Otsu, T., 2011, “Toward harmless detrending,” Seijo University Economic Papers 191, 1-

27, The Economic Institute of Seijo University (Japan).

Otsu, T., 2013, “Peaks and troughs of cycles and filtering methods,” Seijo University

Economic Papers 200, 1-65, The Economic Institute of Seijo University (Japan).

Otsu, T., 2015, “On parameter tuning of Butterworth filters,” Seijo University Economic

Papers 208, 1-49, The Economic Institute of Seijo University (Japan).

Otsu, T., 2017, “Abridged Bry-Boschan Procedure,” Seijo University Economic Papers

215, 85-126, The Economic Institute of Seijo University (Japan).

Otsu, T., 2019, “Coincident index and reference cycle,” Seijo University Economic

Papers 224, 1-47, The Economic Institute of Seijo University (Japan).

Pagan, A. R., 1997, “Towards an understanding of some business cycle characteristics,”

Australian Economic Review 30, 1-15.

Pedersen, T. M., 2001, “The Hodrick-Prescott filter, the Slutzky effect, and the

distortionary effect of filters,” Journal of Economic Dynamics and Control 25, 1081-

1101.

Percival, D. B. and A. T. Walden, 2000, Wavelet Methods For Time Series Analysis,

Cambridge University Press, Cambridge.

Persons, W. M., 1926, “Theories of business fluctuations,” Quarterly Journal of

Economics 41, 94-128.

Pollock, D. S. G., 2000, “Trend estimation and de-trending via rational square-wave

filters,” Journal of Econometrics 99, 317-334.

Priestly, M. B., 1981, Spectral Analysis and Time Series, Academic Press.

Proakis, J. G. and D. G. Manolakis, 2007, Digital Signal Processing 4th edition, Pearson

Prentice Hall.

Romer, C. D., and D. H. Romer, 2019, “NBER Business Cycle Dating: History and

Prospect,” prepared for the session NBER and the Evolution of Economic Research,

1920-2020 at the ASSA Annual Meeting, San Diego, California, January 2020.

Whittle, P., 1983, Prediction and regulation by linear least-square methods, 2nd ed.

(revised), Basil Blackwell, Oxford.

成城・経済研究 第 232 号（2021 年 3 月）

─ 126 ─

Slack in Labor Market and Business Cycles

─ 127 ─



Hodrick, R. J. and E.C. Prescott, 1997, “Post-war U.S. business cycles: An empirical

investigation,” Journal of Money, Credit, and Banking 29, 1-16. Also in Discussion

Paper No.451, Department of Economics, Carnegie-Mellon University, Pittsburgh,

PA, 1980.

Iacobucci, A. and A. Noullez, 2005, “A frequency selective filter for short-length time

series,” Computational Economics 25, 75-102.

King, R. G. and S. T. Rebelo, 1993, “Low frequency filtering and real business cycles,”

Journal of Economic Dynamics and Control 17, 207-231.

Nelson, C. R. and H. Kang, 1981, “Spurious periodicity in inappropriately detrended time

series,” Econometrica 49, 741-751.

Oppenheim, A. V. and R. W. Schafer, 1999, Discrete-time signal processing 2nd edition,

Prentice Hall International.

Otsu, T., 2007, “Time-invariant linear filters and real GDP: A case of Japan,” Seijo

University Economic Papers 174, 29-47, The Economic Institute of Seijo University

(Japan).

Otsu, T., 2010, “Separating trends and cycles,” Seijo University Economic Papers 188,

95-158, The Economic Institute of Seijo University (Japan).

Otsu, T., 2011, “Toward harmless detrending,” Seijo University Economic Papers 191, 1-

27, The Economic Institute of Seijo University (Japan).

Otsu, T., 2013, “Peaks and troughs of cycles and filtering methods,” Seijo University

Economic Papers 200, 1-65, The Economic Institute of Seijo University (Japan).

Otsu, T., 2015, “On parameter tuning of Butterworth filters,” Seijo University Economic

Papers 208, 1-49, The Economic Institute of Seijo University (Japan).

Otsu, T., 2017, “Abridged Bry-Boschan Procedure,” Seijo University Economic Papers

215, 85-126, The Economic Institute of Seijo University (Japan).

Otsu, T., 2019, “Coincident index and reference cycle,” Seijo University Economic

Papers 224, 1-47, The Economic Institute of Seijo University (Japan).

Pagan, A. R., 1997, “Towards an understanding of some business cycle characteristics,”

Australian Economic Review 30, 1-15.

Pedersen, T. M., 2001, “The Hodrick-Prescott filter, the Slutzky effect, and the

distortionary effect of filters,” Journal of Economic Dynamics and Control 25, 1081-

1101.

Percival, D. B. and A. T. Walden, 2000, Wavelet Methods For Time Series Analysis,

Cambridge University Press, Cambridge.

Persons, W. M., 1926, “Theories of business fluctuations,” Quarterly Journal of

Economics 41, 94-128.

Pollock, D. S. G., 2000, “Trend estimation and de-trending via rational square-wave

filters,” Journal of Econometrics 99, 317-334.

Priestly, M. B., 1981, Spectral Analysis and Time Series, Academic Press.

Proakis, J. G. and D. G. Manolakis, 2007, Digital Signal Processing 4th edition, Pearson

Prentice Hall.

Romer, C. D., and D. H. Romer, 2019, “NBER Business Cycle Dating: History and

Prospect,” prepared for the session NBER and the Evolution of Economic Research,

1920-2020 at the ASSA Annual Meeting, San Diego, California, January 2020.

Whittle, P., 1983, Prediction and regulation by linear least-square methods, 2nd ed.

(revised), Basil Blackwell, Oxford.

成城・経済研究 第 232 号（2021 年 3 月）

─ 126 ─

Slack in Labor Market and Business Cycles

─ 127 ─



Step Procedure

I Business cycle extraction :

Extracting business-cycle components by a two-sided tangent-based Butterworth filter. The

deterministic linear trend in Section 3.4 is put back.

II Dating with the business-cycle components:

1. Identification of peaks and troughs:

Find the maximum (peak) or the minimum (trough) of the extracted components within

±6 months (leads and lags).

2. Enforcement of alternation:

Ensure the peaks and the troughs are alternate. If not, choose a peak with a greater

value and a trough with a smaller value. If the values are same, choose an earlier peak

and a later trough.

3. Elimination of turns within 6 months at endpoints:

Eliminate peaks and troughs within 6 months of beginning and end of series.

4. Enforcement of the first and last peak (or trough) to be extrema:

Eliminate peaks (or troughs) at both ends of series which are lower (or higher) than

values closer to end.

5. Enforcement of the minimum cycle duration:

Check if the peak-to-peak and the trough-to-trough cycles are less than 15 months. If

not, eliminate lower peaks (or higher troughs), or if equal, a later peak and an earlier

trough.

6. Enforcement of the minimum phase duration:

Eliminate phases (peak to trough or trough to peak) whose duration is less than 5

months.

Table 1 Abridged Bry-Boschan Procedure

Series Name Mnemonic (ESRI)

1. New Job Offers (Excluding New School Graduates, persons) L3 (leading)

2. Index of Non-Scheduled Worked Hours (Industries Covered, 2015=100) C4 (coincident)

3. Effective Job Offer Rate (Excluding New School Graduates, times) C9 (coincident)

4. Index of Regular Workers Employment (Change from Previous Year, %) Lg2 (lagging)

5. Unemployment Rate (Inverted Scale, %) Lg6 (lagging)

Table 2 Labor Market Indicators of Japan

Note: Seasonally-adjusted series of the 12th-revision composite indices, July 30, 2020.

Dates (month, year) Number of Periods (in months)

Peak Trough Expansion Contraction Duration

June, 1951 October, 1951 ─ 4 ─
January, 1954 November, 1954 27 10 37

June, 1957 June, 1958 31 12 43

December, 1961 October, 1962 42 10 52

October, 1964 October, 1965 24 12 36

July, 1970 December, 1971 57 17 74

November, 1973 March, 1975 23 16 39

January, 1977 October, 1977 22 9 31

February, 1980 February, 1983 28 36 64

June, 1985 November, 1986 28 17 45

February, 1991 October, 1993 51 32 83

May, 1997 January, 1999 43 20 63

November, 2000 January, 2002 22 14 36

February, 2008 March, 2009 73 13 86

March, 2012 November, 2012 36 8 44

October, 2018* 71 ─ ─

Table 3 Reference Dates of Business Cycles: Japan

* Provisional date, as of July 30, 2020.

Source: Indexes of Business Conditions, Economic and Social Research Institute,

Cabinet Office, Government of Japan, July 30, 2020.
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Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1980 2

1981 10 10 9 8

1984 3 4 7 8

1985 6 7

1989 3 1

1990 10 12

1991 2 2 2 1

1997 5 3 4 3 3 3

2000 11 12 10 11 11 11

2006 12 12 12 12

2007 8

2008 2

2012 3 3 4 3 2 3

2013 8 10

2014 3

2017 12

2018 10

2019 6 5 4 6

Deviation (avg. months)** 6.0 5.3 4.9 5.0

Table 4 Month at Peaks: New Job Offers

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1985.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1980 8 11

1981 1

1982 9 9 9 9

1983 2

1986 11 11 12 12 12 12

1989 11 12

1993 10 12 10 10 10 10

1999 1 8 7 6 5

2001 12

2002 1 3 3 4

2003 1

2009 3 3 7 7 7 7

2012 11 11

2013 2 1

2015 8 6 4

2016 5 4

Deviation (avg. months)** 4.6 7.3 6.9 2.7

Table 5 Month at Troughs: New Job Offers

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1983.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1980 2 7

1981 10 12 12 9

1984 3 4 5

1985 6 7 3

1988 9

1989 2

1990 10 9 11

1991 2 1 2

1997 5 3 5 3 3 4

2000 11 12 10 10 10 10

2004 3 2 1 2

2007 8

2008 2 3 2 3 2

2010 6 7 7 8

2012 3 3 3 1 1 1

2013 12

2014 3 1 1 3

2017 12

2018 10

2019 7 7 4 5

Deviation (avg. months)** 4.4 4.1 3.6 2.4

Table 6 Month at Peaks: Index of Non-Scheduled Worked Hours

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1985.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1981 3 5 3

1982 12

1983 2 1 1 1

1986 11 11

1987 1 1 1 1

1989 3 8

1993 10 12 12 11 10 11

1998 12 12 12

1999 1 3 1

2001 12 12 12 11 12

2002 1

2005 4 6 9 6

2009 3 3 5 5 5 5

2011 3 3 3 5

2012 11 11 12 11 12 12

2016 5 11 6 6

2017 9

Deviation (avg. months)** 1.6 1.1 1.4 1.1

Table 7 Month at Troughs: Index of Non-Scheduled Worked Hours

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1983.
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Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1980 2 7

1981 11 12 9

1982 1

1984 3

1985 6 7 1 3 2

1990 10

1991 2 3 4 4 4

1997 5 3 7 4 3 4

2000 11 12 11 12 12

2001 1

2004 11

2006 12 11

2007 8 5 7

2008 2 1 2

2012 3 3 6 5 4 5

2013 12 11

2014 3 2

2017 12

2018 10

2019 4 4 2 1

Deviation (avg. months)** 5.1 4.4 4.1 2.9

Table 8 Month at Peaks: Index of Effective Job Offer Rate

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1985.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1980 12

1981 3 5 2

1982 9 10 9 11

1983 2

1986 11 11

1987 4 4 5 4

1993 10 12 12 11 11 11

1999 1 7 2 1 2

2001 12

2002 1 6 5 8

2003 3

2005 4

2009 3 3 8 8 8 8

2012 11 11

2013 3 3 2

2015 11 10 7

2016 5 9

Deviation (avg. months)** 5.9 3.6 8.0 3.6

Table 9 Month at Troughs: Index of Effective Job Offer Rate

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1983.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1980 2

1981 7 5 5 7

1985 6 7 1 2 3 2

1989 1

1990 10 4 4 4 3

1991 2 8 9 10 8

1993 5

1997 5 3 12 1 12 12

2000 11 12 8 12

2001 1 4

2004 9 8 6 8

2007 8

2008 2 1 2 3 2

2011 8 6

2012 3 3 4 4

2014 3 2 3 2 3

2015 9 9 9 10

2017 12 8 7 7 7

2018 10

Deviation (avg. months)** 5.3 5.3 6.6 6.0

Table 10 Month at Peaks: Index of Regular Workers Employment

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1985.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1983 2 10 10 9 9

1986 11 11

1987 10 10 11 10

1989 6

1990 10 9 9 10

1992 11

1993 10 12

1995 7 7 10 8

1998 12

1999 1 10 11 10 10

2001 12

2002 1 12 12

2003 1 2

2006 4 6 6 5

2009 3 3

2010 1 1 1 1

2012 11 11 12

2013 1 2 1

2014 12 12

2015 2 2

2016 5 10 9 8 8

2018 8 8 8 9

Deviation (avg. months)** 10.3 10.4 11.1 10.3

Table 11 Month at Troughs: Index of Regular Workers Employment

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1983.
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Year
Official

Ref.
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CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1980 2

1981 7 5 5 7

1985 6 7 1 2 3 2

1989 1

1990 10 4 4 4 3
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1997 5 3 12 1 12 12

2000 11 12 8 12

2001 1 4

2004 9 8 6 8

2007 8

2008 2 1 2 3 2
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** Between the official dates and the nearest estimates on and after 1985.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1983 2 10 10 9 9

1986 11 11

1987 10 10 11 10

1989 6

1990 10 9 9 10

1992 11

1993 10 12

1995 7 7 10 8

1998 12

1999 1 10 11 10 10

2001 12

2002 1 12 12

2003 1 2

2006 4 6 6 5

2009 3 3

2010 1 1 1 1

2012 11 11 12

2013 1 2 1

2014 12 12

2015 2 2

2016 5 10 9 8 8

2018 8 8 8 9

Deviation (avg. months)** 10.3 10.4 11.1 10.3

Table 11 Month at Troughs: Index of Regular Workers Employment

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1983.
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Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1980 2

1982 1 2 2 1

1985 6 7 4 5 6 5

1988 8

1990 10 7 4 3 4

1991 2

1992 2 1 9 5

1995 2 1 1 2

1997 5 3 9 9 8 8

2000 11 12 12 11 12 11

2004 8

2005 8 1

2007 8 7

2008 2 4 4 4

2011 10

2012 3 3 11 2 2

2013 9 8

2014 3 2 3

2017 12

2018 10 5 7 5

2019 7

Deviation (avg. months)** 4.9 3.9 3.0 3.7

Table 12 Month at Peaks: Unemployment Rate (Inverted Scale)

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1985.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1981 1 2 3 2

1983 2 3 2 5

1984 5

1986 11 11

1987 4 6 7 4

1989 3

1990 12

1991 7 1 5

1993 10 12

1994 4 4 3 3

1995 10 11 11 12

1998 12

1999 1 2 2 2 3

2001 12

2002 1

2003 3 3 3 2

2005 11

2006 1 2

2009 3 3 8 10 10 9

2012 11 11 10 12

2013 5 3

2016 5 4

2017 5 3 2

2018 12

2019 1

Deviation (avg. months)** 7.4 5.1 5.1 5.4

Table 13 Month at Troughs: Unemployment Rate (Inverted Scale)

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1983.

Official Ref. Business Cycle Components obtained by:

Year Month Butterworth Hamming CF HP

1980 2 1.19

1981 2.62 1.49 -0.04 -0.09

1984 4.40 4.72 4.96

1985 6 2.94

1988 1.35

1989 3.04

1990 9.23 6.53

1991 2 8.15 6.86

1997 5 10.31 9.17 8.52 7.22

2000 11 2.58 3.15 3.24 3.38

2004 1.56 2.01 2.88 1.47

2007

2008 2 7.80 7.36 6.37 6.80

2010 0.31 2.13 3.78 1.18

2012 3 1.78 2.78 4.04 0.62

2013 2.79

2014 4.63 4.13 2.77

2017

2018 10

2019 0.53 0.66 2.44 1.25

Table 14 Values at Peaks: Index of Non-Scheduled Worked Hours

Note: Values of deviation from secular trends. Base year = 2015.

Official Ref. Business Cycle Components obtained by:

Year Month Butterworth Hamming CF HP

1981 0.51 -0.58 -0.49

1982 -3.15

1983 2 -1.32 -2.05 -3.71

1986 11

1987 -11.25 -10.05 -8.76 -7.05

1989 1.02 2.81

1993 10 -10.63 -9.17 -8.00 -7.63

1998 -4.42 -5.85

1999 1 -3.12 -3.92

2001 -6.99 -5.42 -4.14 -4.61

2002 1

2005 -0.28 -0.65 -1.55 -0.96

2009 3 -14.94 -13.77 -13.21 -11.28

2011 -1.28 -1.26 0.53 -0.64

2012 11 -0.88 -0.67 -0.54 -1.82

2016 -2.35 -3.09 -0.75

2017 -2.17

Table 15 Values at Troughs: Index of Non-Scheduled Worked Hours

Note: Values of deviation from secular trends. Base year = 2015.
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Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP
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1985 6 7 4 5 6 5

1988 8

1990 10 7 4 3 4

1991 2

1992 2 1 9 5

1995 2 1 1 2

1997 5 3 9 9 8 8

2000 11 12 12 11 12 11

2004 8

2005 8 1

2007 8 7

2008 2 4 4 4

2011 10

2012 3 3 11 2 2

2013 9 8

2014 3 2 3

2017 12

2018 10 5 7 5

2019 7

Deviation (avg. months)** 4.9 3.9 3.0 3.7

Table 12 Month at Peaks: Unemployment Rate (Inverted Scale)

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1985.

Year
Official

Ref.

Official

CCI*

Business Cycle Components obtained by:

Butterworth Hamming CF HP

1981 1 2 3 2

1983 2 3 2 5

1984 5

1986 11 11

1987 4 6 7 4

1989 3

1990 12

1991 7 1 5

1993 10 12

1994 4 4 3 3

1995 10 11 11 12

1998 12

1999 1 2 2 2 3

2001 12

2002 1

2003 3 3 3 2

2005 11

2006 1 2

2009 3 3 8 10 10 9

2012 11 11 10 12

2013 5 3

2016 5 4

2017 5 3 2

2018 12

2019 1

Deviation (avg. months)** 7.4 5.1 5.1 5.4

Table 13 Month at Troughs: Unemployment Rate (Inverted Scale)

Note: * Composite Coincident Indicator. Base year = 2015.

** Between the official dates and the nearest estimates on and after 1983.

Official Ref. Business Cycle Components obtained by:

Year Month Butterworth Hamming CF HP

1980 2 1.19

1981 2.62 1.49 -0.04 -0.09

1984 4.40 4.72 4.96

1985 6 2.94

1988 1.35

1989 3.04

1990 9.23 6.53

1991 2 8.15 6.86

1997 5 10.31 9.17 8.52 7.22

2000 11 2.58 3.15 3.24 3.38

2004 1.56 2.01 2.88 1.47

2007

2008 2 7.80 7.36 6.37 6.80

2010 0.31 2.13 3.78 1.18

2012 3 1.78 2.78 4.04 0.62

2013 2.79

2014 4.63 4.13 2.77

2017

2018 10

2019 0.53 0.66 2.44 1.25

Table 14 Values at Peaks: Index of Non-Scheduled Worked Hours

Note: Values of deviation from secular trends. Base year = 2015.

Official Ref. Business Cycle Components obtained by:

Year Month Butterworth Hamming CF HP

1981 0.51 -0.58 -0.49

1982 -3.15

1983 2 -1.32 -2.05 -3.71

1986 11

1987 -11.25 -10.05 -8.76 -7.05

1989 1.02 2.81

1993 10 -10.63 -9.17 -8.00 -7.63

1998 -4.42 -5.85

1999 1 -3.12 -3.92

2001 -6.99 -5.42 -4.14 -4.61

2002 1

2005 -0.28 -0.65 -1.55 -0.96

2009 3 -14.94 -13.77 -13.21 -11.28

2011 -1.28 -1.26 0.53 -0.64

2012 11 -0.88 -0.67 -0.54 -1.82

2016 -2.35 -3.09 -0.75

2017 -2.17

Table 15 Values at Troughs: Index of Non-Scheduled Worked Hours

Note: Values of deviation from secular trends. Base year = 2015.
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Figure 1 Slackness: New Job Offers Figure 2 Slackness: Index of Non-Scheduled Worked Hours (Industries Covered)
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Figure 1 Slackness: New Job Offers Figure 2 Slackness: Index of Non-Scheduled Worked Hours (Industries Covered)
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Figure 3 Slackness: Index of Effective Job Offer Rate Figure 4 Slackness: Index of Regular Workers Employment
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Figure 3 Slackness: Index of Effective Job Offer Rate Figure 4 Slackness: Index of Regular Workers Employment
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Figure 5 Slackness: Unemployment Rate




